Home / Journals / FDMP / Online First
Table of Content
  • Open Access

    ARTICLE

    Nanoparticle Shape Effect on a Sodium–Alginate Based Cu–Nanofluid under a Transverse Magnetic Field

    Samia Rani1, H. A. M. Al–Sharifi2, Mohammad S. Zannon3, Abid Hussanan1,*, Zafar Ullah1
    FDMP-Fluid Dynamics & Materials Processing, DOI:10.32604/fdmp.2023.025224
    (This article belongs to this Special Issue: Electro- magnetohydrodynamic Nanoliquid Flow and Heat Transfer)
    Abstract Sodium-alginate (SA) based nanofluids represent a new generation of fluids with improved performances in terms of heat transfer. This work examines the influence of the nanoparticle shape on a non–Newtonian viscoplastic Cu–nanofluid pertaining to this category. In particular, a stretching/shrinking sheet subjected to a transverse magnetic field is considered. The proposed Cu–nanofluid consists of four different nanoparticles having different shapes, namely bricks, cylinders, platelets, and blades dispersed in a mixture of sodium alginate with Prandtl number Pr = 6.45. Suitable similarity transformations are employed to reduce non–linear PDEs into a system of ODEs and these equations and related boundary conditions… More >

  • Open Access

    ARTICLE

    Weak Expansive Soil Physical Properties Modification by Means of a Cement-Jute Fiber

    Zisheng Yang1, Wendong Li1, Xuelei Cheng1,2,*, Ran Hai1, Shunqun Li3
    FDMP-Fluid Dynamics & Materials Processing, DOI:10.32604/fdmp.2023.025444
    Abstract Sixteen groups of comprehensive tests have been conducted to investigate the modifications in the physical properties of a weak expansive soil due to the addition of a cement jute fiber. The tests have been conducted to analyze the liquid plastic limit, the particle distribution and the free expansion rate. The results show that: (1) With an increase in the cement-jute fiber content, the free expansion rate of the modified expansive soil gradually decreases, however, such a rate rebounds when the fiber content exceeds 0.5% and the cement content exceeds 6%. (2) With an increase in the cement percentage, the particle… More >

  • Open Access

    ARTICLE

    Research on the Corrosion of J55 Steel Due to Oxygen-Reducing Air Flooding in Low-Permeability Reservoirs

    Liang Wang1, Baofeng Hou1, Yanming Fang3, Jintao Zhang2, Fajian Nie1,2,*
    FDMP-Fluid Dynamics & Materials Processing, DOI:10.32604/fdmp.2023.025966
    Abstract Oxygen-reducing air flooding is a low-permeability reservoir recovery technology with safety and low-cost advantages. However, in the process of air injection and drive, carbon in the air is oxidized through the crude oil reservoir to generate CO2, and this can cause serious corrosion in the recovery well. In this study, experiments on the corrosion of J55 tubular steel in a fluid environment with coexisting O2 and CO2 in an autoclave are presented. In particular, a weight loss method and a 3D morphometer were used to determine the average and the local corrosion rate. The corrosion surface morphology and composition were… More >

  • Open Access

    ARTICLE

    Analysis of a Water-Cooled Unit under Different Loads

    Daoming Shen1,*, Jinhong Xia1, Chao Gui1, Songtao Xue2
    FDMP-Fluid Dynamics & Materials Processing, DOI:10.32604/fdmp.2023.024925
    (This article belongs to this Special Issue: Computational Mechanics and Fluid Dynamics in Intelligent Manufacturing and Material Processing)
    Abstract In order to ensure the safe operation of the compressors used in water chillers, in the present study some interlock protections have been added to the related design. These include a low pressure protection, a high pressure protection, an exhaust temperature protection and a differential pressure protection. Some tests have been conducted by tuning the saturation suction and exhaust temperatures of the compressor through adjustment of the cold source outlet temperature and the ambient temperature. The results show that the ambient temperature increases with decreasing device load and increasing fan speed under the same saturated suction temperature; the device refrigerating… More >