Home / Journals / FDMP / Vol.19, No.10, 2023
Special lssues
Table of Content
cover

On the Cover


Numerical simulations are conducted to improve the energy acquisition efficiency of H-type vertical axis wind turbines through the optimization of the related blade airfoil aerodynamic performance. The Bézier curve is initially used to fit the curve profile of a NACA2412 airfoil, and the moving asymptote algorithm is then exploited to optimize the design of the considered H-type vertical-axis wind-turbine blade airfoil for a certain attack angle. The results show that the maximum lift coefficient of the optimized airfoil is 8.33% higher than that of the original airfoil. The maximum lift-to-drag ratio of the optimized airfoil exceeds the maximum lift-to-drag ratio of the original airfoil by 11.22%. Moreover, the power coefficient is increased by 12.19% and the torque coefficient of the wind turbine is significantly improved.

View this paper

  • Open AccessOpen Access

    ARTICLE

    Characterization of Unsaturated Polyester Filled with Waste Coconut Shells, Walnut Shells, and Carbon Fibers

    Marwah Subhi Attallah, Reem Alaa Mohammed*, Ruaa Haitham Abdel-Rahim
    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2449-2469, 2023, DOI:10.32604/fdmp.2023.027750
    (This article belongs to the Special Issue: Recent advancements in thermal fluid flow applications)
    Abstract This study aims to evaluate the erosion behavior and the hardness of hybrid composites made of varying amounts of coconut shells, walnut shells, and carbon fibers dispersed in a polyester matrix. MINITAB (L16) Taguchi experiments were used to determine the optimal combination of parameters. In particular, an erosion device consisting of a motor with a constant flow rate of 45 L/min, a pump with a diameter of 40 mm, a nozzle with a diameter of 5 mm, and a tank made of “perspex glass” 55 cm long, 30 cm tall, and 25 cm wide was used. The tests were conducted by varying the sample-to-nozzle distance, the… More >

    Graphic Abstract

    Characterization of Unsaturated Polyester Filled with Waste Coconut Shells, Walnut Shells, and Carbon Fibers

  • Open AccessOpen Access

    ARTICLE

    Effect of Velocity Ratio, Viscosity Ratio, Contact Angle, and Channel Size Ratio on Droplet Formation

    Mohammed Bourega*, Ibrahim Kromba, Khadidja Fellah Arbi, Sofiane Soulimane
    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2471-2480, 2023, DOI:10.32604/fdmp.2023.028661
    Abstract This study uses a T-junction to examine the effects of different parameters (velocity ratio, viscosity, contact angle, and channel size ratio) on the generation of microdroplets, related rate, and size. More specifically, numerical simulations are exploited to investigate situations with a velocity varying from 0.004 to 1.6 m/s for the continuous phase and from 0.004 to 0.8 m/s for the dispersed phase, viscosity ratios (0.668, 1, 6.689, 10, 66.899), contact angle 80° < θ < 270° and four different canal size ratios (1, 1.5, 2 and 4). The results show that canal size influences droplet size and the generation rate.… More >

    Graphic Abstract

    Effect of Velocity Ratio, Viscosity Ratio, Contact Angle, and Channel Size Ratio on Droplet Formation

  • Open AccessOpen Access

    ARTICLE

    Influence of Different Transition Modes on the Performances of a Hydraulic Turbine

    Fengxia Shi1,2, Yucai Tang1,*, Dedong Ma1, Xiangyun Shi1, Guangbiao Zhao1
    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2481-2497, 2023, DOI:10.32604/fdmp.2023.028416
    Abstract In order to analyze the response of a hydraulic turbine to a variation in the operating conditions, different laws of variation in time of the mass flow rate have been considered. After validating the overall numerical framework through comparison with relevant experiments, the performances of the considered turbine have been analyzed from a fluid-dynamic point of view. The results show that different time profiles of the mass flow rate (in this work, for simplicity, referred to as “transition functions”) have a varying influence on the transient behavior of the turbine. When a quadratic function is considered for the case of… More >

    Graphic Abstract

    Influence of Different Transition Modes on the Performances of a Hydraulic Turbine

  • Open AccessOpen Access

    ARTICLE

    Influence of Spray Gun Position and Orientation on Liquid Film Development along a Cylindrical Surface

    Jiuxuan Liu, Yong Zeng*, Xueya Zhao, Hongbo Chen, Bin Yan, Qian Lu
    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2499-2518, 2023, DOI:10.32604/fdmp.2023.028413
    (This article belongs to the Special Issue: CFD Modeling and Multiphase Flows)
    Abstract

    A method combining computational fluid dynamics (CFD) and an analytical approach is proposed to develop a prediction model for the variable thickness of the spray-induced liquid film along the surface of a cylindrical workpiece. The numerical method relies on an Eulerian-Eulerian technique. Different cylinder diameters and positions and inclinations of the spray gun are considered and useful correlations for the thickness of the liquid film and its distribution are determined using various data fitting algorithms. Finally, the reliability of the proposed method is verified by means of experimental tests where the robot posture is changed. The provided correlation are intended… More >

    Graphic Abstract

    Influence of Spray Gun Position and Orientation on Liquid Film Development along a Cylindrical Surface

  • Open AccessOpen Access

    ARTICLE

    Experimental Study on the Thermal Performances of a Tube-Type Indirect Evaporative Cooler

    Tiezhu Sun*, Huan Sun, Tingzheng Tang, Yongcheng Yan, Peixuan Li
    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2519-2531, 2023, DOI:10.32604/fdmp.2023.027118
    (This article belongs to the Special Issue: Advances in Thermodynamic System and Energy Conservation Technology)
    Abstract The so-called indirect evaporative cooling technology is widely used in air conditioning applications. The thermal characterization of tube-type indirect evaporative coolers, however, still presents challenges which need to be addressed to make this technology more reliable and easy to implement. This experimental study deals with the performances of a tube-type indirect evaporative cooler based on an aluminum tube with a 10 mm diameter. In particular, the required tests were carried out considering a range of dry-bulb temperatures between 16°C and 18°C and a temperature difference between the wet-bulb and dry-bulb temperature of 2°C∼4°C. The integrated convective heat transfer coefficient inside the… More >

    Graphic Abstract

    Experimental Study on the Thermal Performances of a Tube-Type Indirect Evaporative Cooler

  • Open AccessOpen Access

    ARTICLE

    Numerical Analysis of the Influence of Turbulence Intensity on Iced Conductors Gallop Phenomena

    Yuantao Liu1, Yanzhe Li1,*, Shanpeng Zhao1,2, Youpeng Zhang1, Taizhen Zhang3
    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2533-2547, 2023, DOI:10.32604/fdmp.2023.027471
    (This article belongs to the Special Issue: Turbulence and Environmental Fluids)
    Abstract Turbulence is expected to play a relevant role in the so-called conductor gallop phenomena, namely, the highamplitude, low-frequency oscillation of overhead power lines due to the formation of ice structures and the ensuing effect that wind can have on these. In this work, the galloping time history of a wire with distorted (fixed in time) shape due to the formation of ice is analyzed numerically in the frame of a fluid-solid coupling method for different wind speeds and levels of turbulence. The results show that the turbulence intensity has a moderate effect on the increase of the conductor’s aerodynamic lift… More >

    Graphic Abstract

    Numerical Analysis of the Influence of Turbulence Intensity on Iced Conductors Gallop Phenomena

  • Open AccessOpen Access

    ARTICLE

    Subsea Compensation of Pressure Based on Reducer Bellows

    Shihong Xiao1,2,*, Shichao Zhou1,*, Linlin Yue1, Xianyou He1, Maolin Xiang1
    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2549-2567, 2023, DOI:10.32604/fdmp.2023.025063
    (This article belongs to the Special Issue: Simulation of the Structure-Fluid Interaction and Heat Transfer)
    Abstract In this study, the pressure compensation mechanism of a reducer bellows is analyzed. This device is typically used to reduce the size of undersea instruments and improve related pressure resistance and sealing capabilities. Here, its axial stiffness is studied through a multi-fold approach based on theory, simulations and experiments. The results indicate that the mechanical strength of the reducer bellows, together with the oil volume and temperature are the main factors influencing its performances. In particular, the wall thickness, wave number, middle distance, and wave height are the most influential parameters. For a certain type of reducer bellows, the compensation… More >

  • Open AccessOpen Access

    ARTICLE

    An Artificial Intelligence Algorithm for the Real-Time Early Detection of Sticking Phenomena in Horizontal Shale Gas Wells

    Qing Wang*, Haige Wang, Hongchun Huang, Lubin Zhuo, Guodong Ji
    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2569-2578, 2023, DOI:10.32604/fdmp.2023.025349
    (This article belongs to the Special Issue: Fluid Flow and Materials Strength related to the Wellbore Safety)
    Abstract Sticking is the most serious cause of failure in complex drilling operations. In the present work a novel “early warning” method based on an artificial intelligence algorithm is proposed to overcome some of the known problems associated with existing sticking-identification technologies. The method is tested against a practical case study (Southern Sichuan shale gas drilling operations). It is shown that the twelve sets of sticking fault diagnostic results obtained from a simulation are all consistent with the actual downhole state; furthermore, the results from four groups of verification samples are also consistent with the actual downhole state. This shows that… More >

  • Open AccessOpen Access

    ARTICLE

    Experimental and Numerical Analysis of Oil-Water Flow with Drag Reducing Polymers in Horizontal Pipes

    Amer A. Abdulrahman1, Bashar J. Kadhim1, Zainab Y. Shnain1, Hassan Sh. Majidi2, Asawer A. Alwaiti1,*, Farooq Al-Sheikh1, Adnan A. AbdulRazak1, Mohammed Shorbaz1, Mazin J. Shibeeb3
    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2579-2595, 2023, DOI:10.32604/fdmp.2023.027454
    (This article belongs to the Special Issue: Recent advancements in thermal fluid flow applications)
    Abstract The well-known frictional effect related to liquid-liquid two-phase flow in pipelines can be reduced using drag-reducing additives. In this study, such an effect has been investigated experimentally using a mixture of oil and water. Moreover, numerical simulations have been carried out using the COMSOL simulation software. The measurements were taken in a horizontal pipe with the length and diameter equal to 3 and 0.125 m, respectively. Moreover, Polyethylene oxide with 150 ppm was exploited to reduce the drag effect while considering different water-to-oil fractions (0.3, 0.4, 0.5, and 0.7) and a constant total flow velocity of 2.3 m/s. As made… More >

  • Open AccessOpen Access

    ARTICLE

    Simulation and Optimization of the Fluid Solidification Process in Brazed Plate Heat Exchangers

    Weiting Jiang1,*, Lei Zhao1,*, Chongyang Wang2, Tingni He1, Weiguo Pan1
    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2597-2611, 2023, DOI:10.32604/fdmp.2023.027504
    (This article belongs to the Special Issue: CFD Modeling and Multiphase Flows)
    Abstract When a brazed plate heat exchanger is used as an evaporator, the working mass in the channel may undergo solidification, thereby hindering the refrigeration cycle. In this study the liquid solidification process and its optimization in a brazed plate heat exchanger are investigated numerically for different inlet velocities; moreover, different levels of corrugation are considered. The results indicate that solidification first occurs around the contacts, followed by the area behind the contacts. It is also shown that dead flow zones exist in the sharp areas and such areas are prone to liquid solidification. After optimization, the solidification area attains its… More >

  • Open AccessOpen Access

    REVIEW

    A Comprehensive Review of the Influence of Heat Exchange Tubes on Hydrodynamic, Heat, and Mass Transfer in Bubble and Slurry Bubble Columns

    Dalia S. Makki1, Hasan Sh. Majdi2, Amer A. Abdulrahman1, Abbas J. Sultan1,3,*, Zahraa W. Hasan1, Laith S. Sabri1,3, Bashar J. Kadhim1, Muthanna H. Al-Dahhan3
    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2613-2637, 2023, DOI:10.32604/fdmp.2023.028081
    (This article belongs to the Special Issue: Recent advancements in thermal fluid flow applications)
    Abstract Bubble and slurry bubble column reactors (BCRs/SBCRs) are used for various chemical, biochemical, and petrochemical applications. They have several operational and maintenance advantages, including excellent heat and mass transfer rates, simplicity, and low operating and maintenance cost. Typically, a catalyst is present in addition to biochemical processes where microorganisms are used to produce industrially valuable bio-products. Since most applications involve complicated gas-liquid, gas-liquid-solid, and exothermic processes, the BCR/SBCR must be equipped with heat-exchanging tubes to dissipate heat and control the reactor’s overall performance. In this review, past and very recent experimental and numerical investigations on such systems are critically discussed.… More >

  • Open AccessOpen Access

    ARTICLE

    Experimental Evaluation of Compressive Strength and Gas Permeability of Glass-Powder-Containing Mortar

    Yue Liang, Wenxuan Dai, Wei Chen*
    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2639-2659, 2023, DOI:10.32604/fdmp.2023.027622
    (This article belongs to the Special Issue: Advances in Solid Waste Processing and Recycling Technologies for Civil Engineering Materials)
    Abstract Glass powder of various particle sizes (2, 5, 10 and 15 μm) has been assessed as a possible cement substitute for mortars. Different replacement rates of cement (5%, 10%, 15%, and 20%) have been considered for all particle sizes. The accessible porosity, compressive strength, gas permeability and microstructure have been investigated accordingly. The results have shown that adding glass powder up to 20% has a significantly negative effect on the porosity and compressive strength of mortar. The compressive strength initially rises with a 5% replacement and then decreases. Similarly, the gas permeability of the mortar displays a non-monotonic behavior; first, it… More >

  • Open AccessOpen Access

    ARTICLE

    Optimized Design of H-Type Vertical Axis Wind Airfoil at Multiple Angles of Attack

    Chunyan Zhang1, Shuaishuai Wang1,2, Yinhu Qiao1,*, Zhiqiang Zhang1,2
    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2661-2679, 2023, DOI:10.32604/fdmp.2023.028059
    (This article belongs to the Special Issue: CFD Modeling and Multiphase Flows)
    Abstract Numerical simulations are conducted to improve the energy acquisition efficiency of H-type vertical axis wind turbines through the optimization of the related blade airfoil aerodynamic performance. The Bézier curve is initially used to fit the curve profile of a NACA2412 airfoil, and the moving asymptote algorithm is then exploited to optimize the design of the considered H-type vertical-axis wind-turbine blade airfoil for a certain attack angle. The results show that the maximum lift coefficient of the optimized airfoil is 8.33% higher than that of the original airfoil. The maximum lift-to-drag ratio of the optimized airfoil exceeds the maximum lift-to-drag ratio… More >

    Graphic Abstract

    Optimized Design of H-Type Vertical Axis Wind Airfoil at Multiple Angles of Attack

  • Open AccessOpen Access

    ARTICLE

    New Nano Polymer Materials for Composite Exterior-Wall Coatings

    Yue Yu*
    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2681-2694, 2023, DOI:10.32604/fdmp.2023.028250
    Abstract A triethylenetetramine epoxy mixture was synthesized through the reaction of a low-molecular-weight liquid epoxy resin with triethylenetetramine (TETA). Then triethyltetramine (TETA) was injected dropwise into a propylene glycol methyl ether (PM) solution for chain extension reaction. A hydrophilic and flexible polyether segment was introduced into the hardener molecule. The effects of TETA/DGEPG, reaction temperature and reaction time on the epoxy conversion of polyethylene glycol diglycidyl ether (DGEPG) were studied. In addition, several alternate strategies to add epoxy resin to the high-speed dispersion machine and synthesize MEA DGEBA adduct (without catalyst and with bisphenol A diglycidyl ether epoxy resin) were compared.… More >

  • Open AccessOpen Access

    ARTICLE

    Investigation of Electrical Parameters of Fresh Water and Produced Mixed Injection in High-Salinity Reservoirs

    Jun Li1, Guofeng Cheng2, Hongwei Xiao3, Xiang Li4, Lizhi Wang4, Hui Xu5,*, Yu Wang6, Nannan Liu5, Shangping Chen5, Xing Shi5
    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2695-2706, 2023, DOI:10.32604/fdmp.2023.028115
    Abstract Assuming a reservoir with a typical salt-lake background in the Qaidam Basin as a testbed, in this study the variation law of the rock electrical parameters has been determined through water displacement experiments with different salinities. As made evident by the results, the saturation index increases with the degree of water injection. When the salinity of the injected water is lower than 80000 ppm, the resistivity of the rock sample first decreases, then it remains almost constant in an intermediate stage, and finally it grows, thereby giving rise to a ‘U’ profile behavior. As the salinity decreases, the water saturation… More >

    Graphic Abstract

    Investigation of Electrical Parameters of Fresh Water and Produced Mixed Injection in High-Salinity Reservoirs

  • Open AccessOpen Access

    ARTICLE

    Numerical Investigation of the Multiphase Flow Originating from the Muzzle of Submerged Parallel Guns

    Dongxiao Zhang1, Lin Lu1,*, Xiaobin Qi2,3, Xuepu Yan1, Cisong Gao1, Yanxiao Hu1
    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2707-2728, 2023, DOI:10.32604/fdmp.2023.028641
    Abstract A two-dimensional model, employing a dynamic mesh technology, is used to simulate numerically the transient multiphase flow field produced by two submerged parallel guns. After a grid refinement study ensuring grid independence, five different conditions are considered to assess the evolution of cavitation occurring in proximity to the gun muzzle. The simulation results show that flow interference is enabled when the distance between the parallel barrels is relatively small; accordingly, the generation and evolution of the vapor cavity becomes more complex. By means of the Q criterion for vorticity detection, it is shown that cavitation causes the generation of vorticity… More >

  • Open AccessOpen Access

    ARTICLE

    A Productivity Prediction Method Based on Artificial Neural Networks and Particle Swarm Optimization for Shale-Gas Horizontal Wells

    Bin Li*
    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2729-2748, 2023, DOI:10.32604/fdmp.2023.029649
    (This article belongs to the Special Issue: Solid, Fluid, and Thermal Dynamics in the Development of Unconventional Resources )
    Abstract In order to overcome the deficiencies of current methods for the prediction of the productivity of shale gas horizontal wells after fracturing, a new sophisticated approach is proposed in this study. This new model stems from the combination several techniques, namely, artificial neural network (ANN), particle swarm optimization (PSO), Imperialist Competitive Algorithms (ICA), and Ant Clony Optimization (ACO). These are properly implemented by using the geological and engineering parameters collected from 317 wells. The results show that the optimum PSO-ANN model has a high accuracy, obtaining a R2 of 0.847 on the testing. The partial dependence plots (PDP) indicate that… More >

  • Open AccessOpen Access

    ARTICLE

    Effect of the Arrangement of a New-Type of Turbulator Inserts on Heat Pipe Exchanger Performances

    Ibtisam A. Hasan*, Wafa Maki
    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2749-2759, 2023, DOI:10.32604/fdmp.2023.027260
    (This article belongs to the Special Issue: Recent advancements in thermal fluid flow applications)
    Abstract This research tests the effect of introducing turbulators of a new type into a circular tube heat exchanger under a constant and uniform longitudinal heat flux condition. A 45 mm diameter copper tube with a length of 1,350 mm is utilized with a solid disk being inserted inside the tube, which consists of three sections, each one containing two slots. The slot is cut at a 45 degree angle toward the inner tube surface, which results in diverging the flow toward the inner hot tube surface in order to enhance the heat transfer process. Air is considered as the working fluid with… More >

Per Page:

Share Link