Home / Journals / FDMP / Vol.21, No.5, 2025
Special Issues
Table of Content
cover

On the Cover

This study systematically examines the permeability characteristics of collapse columns and the mechanisms behind water inrush events. A schematic diagram effectively illustrates the hydrogeological conditions in coal mining areas affected by collapse columns. It shows how geological structures can serve as primary water-conducting channels when subjected to the combined effects of mining-induced stress and confined water pressure, ultimately resulting in water inrush incidents at the working face.

View this paper

  • Open AccessOpen Access

    REVIEW

    State-of-the-Art Review on Seepage Instability and Water Inrush Mechanisms in Karst Collapse Columns

    Zhengzheng Cao1, Shuaiyang Zhang1, Cunhan Huang2,*, Feng Du3,4, Zhenhua Li3,4, Shuren Wang1, Wenqiang Wang3,4, Minglei Zhai3,4
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1007-1028, 2025, DOI:10.32604/fdmp.2025.062738 - 30 May 2025
    Abstract Karst collapse columns typically appear unpredictably and without a uniform spatial arrangement, posing challenges for mining operations and water inrush risk assessment. As major structural pathways for mine water inrush, they are responsible for some of the most frequent and severe water-related disasters in coal mining. Understanding the mechanisms of water inrush in these collapse columns is therefore essential for effective disaster prevention and control, making it a key research priority. Additionally, investigating the developmental characteristics of collapse columns is crucial for analyzing seepage instability mechanisms. In such a context, this paper provides a comprehensive… More >

    Graphic Abstract

    State-of-the-Art Review on Seepage Instability and Water Inrush Mechanisms in Karst Collapse Columns

  • Open AccessOpen Access

    ARTICLE

    Analytical Investigation of MFD Viscosity and Ohmic Heating in MHD Boundary Layers of Jeffrey Fluid

    K. Sinivasan1, N. Vishnu Ganesh1,*, G. Hirankumar2, M. Al-Mdallal Qasem3,*
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1029-1049, 2025, DOI:10.32604/fdmp.2025.064503 - 30 May 2025
    Abstract In this study, an analytical investigation is carried out to assess the impact of magnetic field-dependent (MFD) viscosity on the momentum and heat transfers inside the boundary layer of a Jeffrey fluid flowing over a horizontally elongating sheet, while taking into account the effects of ohmic dissipation. By applying similarity transformations, the original nonlinear governing equations with partial derivatives are transformed into ordinary differential equations. Analytical expressions for the momentum and energy equations are derived, incorporating the influence of MFD viscosity on the Jeffrey fluid. Then the impact of different parameters is assessed, including magnetic More >

  • Open AccessOpen Access

    ARTICLE

    Effect of Libration on Fluid Flow and Granular Medium Dynamics in a Rotating Cylindrical Annulus

    Denis Polezhaev*, Alexey Vjatkin, Victor Kozlov
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1051-1061, 2025, DOI:10.32604/fdmp.2025.062000 - 30 May 2025
    (This article belongs to the Special Issue: Non-Equilibrium Processes in Continuous Media)
    Abstract The dynamics of fluid and non-buoyant particles in a librating horizontal annulus is studied experimentally. In the absence of librations, the granular material forms a cylindrical layer near the outer boundary of the annulus and undergoes rigid-body rotation with the fluid and the annulus. It is demonstrated that the librational liquefaction of the granular material results in pattern formation. This self-organization process stems from the excitation of inertial modes induced by the oscillatory motion of liquefied granular material under the influence of the gravitational force. The inertial wave induces vortical fluid flow which entrains particles More >

    Graphic Abstract

    Effect of Libration on Fluid Flow and Granular Medium Dynamics in a Rotating Cylindrical Annulus

  • Open AccessOpen Access

    ARTICLE

    Numerical Analysis of Dual Atomizing Nozzle Jets in a Waste Warehouse

    Yan Xiong1, Xiangnan Song1, Jiawei Lu1, Lei Liu2, Yaru Yan3, Xuemin Ye3,*
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1063-1077, 2025, DOI:10.32604/fdmp.2025.063769 - 30 May 2025
    Abstract Enhancing the fermentation efficiency of waste in waste warehouses is pivotal for accelerating the pyrolysis process and minimizing harmful gas emissions. This study proposes an integrated approach, combining hot air injection with dual atomizing nozzles, for the thermal treatment of waste piles. Numerical simulations are employed to investigate the influence of various parameters, namely, nozzle height, nozzle tilt angle, inlet air velocity and air temperature, on the droplet diffusion process, spread area, droplet temperature, and droplet size distribution. The results show that reducing the nozzle height increases the temperature of droplets upon their deposition on… More >

    Graphic Abstract

    Numerical Analysis of Dual Atomizing Nozzle Jets in a Waste Warehouse

  • Open AccessOpen Access

    ARTICLE

    The Influence of an Imposed Jet and Front and Rear Wall Modification on Aerodynamic Noise in High-Speed Train Cavities

    Yangyang Cao, Jiye Zhang*, Jiawei Shi, Yao Zhang
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1079-1098, 2025, DOI:10.32604/fdmp.2025.060429 - 30 May 2025
    (This article belongs to the Special Issue: Computational Fluid Dynamics: Two- and Three-dimensional fluid flow analysis over a body using commercial software)
    Abstract The pantograph area is a critical source of aerodynamic noise in high-speed trains, generating noise both directly and through its cavity, a factor that warrants considerable attention. One effective method for reducing aerodynamic noise within the pantograph cavity involves the introduction of a jet at the leading edge of the cavity. This study investigates the mechanisms driving cavity aerodynamic noise under varying jet velocities, using Improved Delayed Detached Eddy Simulation (IDDES) and Ffowcs Williams-Hawkings (FW-H) equations. The numerical simulations reveal that an increase in jet velocity results in a higher elevation of the shear layer… More >

  • Open AccessOpen Access

    ARTICLE

    Effects of Soil Properties on the Diffusion of Hydrogen-Blended Natural Gas from an Underground Pipe

    Shiyao Peng1, Hanwen Zhang1, Chong Chai1, Shilong Xue2, Xiaobin Zhang2,*
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1099-1112, 2025, DOI:10.32604/fdmp.2025.060452 - 30 May 2025
    Abstract The diffusion of hydrogen-blended natural gas (HBNG) from buried pipelines in the event of a leak is typically influenced by soil properties, including porosity, particle size, temperature distribution, relative humidity, and the depth of the pipeline. This study models the soil as an isotropic porous medium and employs a CFD-based numerical framework to simulate gas propagation, accounting for the coupled effects of soil temperature and humidity. The model is rigorously validated against experimental data on natural gas diffusion in soil. It is then used to explore the impact of relevant parameters on the diffusion behavior… More >

  • Open AccessOpen Access

    ARTICLE

    Numerical Analysis of the Aerodynamic Performance of an Ahmed Body Fitted with Spoilers of Different Opening Areas

    Haichao Zhou*, Wei Zhang, Tinghui Huang, Haoran Li
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1113-1131, 2025, DOI:10.32604/fdmp.2025.064991 - 30 May 2025
    (This article belongs to the Special Issue: Recent Advances in Computational Fluid Dynamics)
    Abstract The configuration of a spoiler plays a crucial role in the aerodynamics of a vehicle. In particular, investigating the impact of spoiler design on aerodynamic performance is essential for effectively reducing drag and optimizing efficiency. This study focuses on the 35° Ahmed body as the test model and examines six different spoiler types mounted on its slant surface. Using the Lattice Boltzmann Method (LBM) in XFlow and the Large Eddy Simulation (LES) technique, the aerodynamic effects of these spoilers were analyzed. The numerical approach was validated against published experimental data. Results indicate that aerodynamic drag More >

  • Open AccessOpen Access

    ARTICLE

    Rising Bubbles and Ensuing Wake Effects in Bottom-Blown Copper Smelters

    Zhi Yang1,2, Xiaohui Zhang1,2,*, Xinting Tong3, Yutang Zhao4, Teng Xia1,2, Hua Wang1,2
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1133-1150, 2025, DOI:10.32604/fdmp.2025.061737 - 30 May 2025
    Abstract In bottom-blown copper smelting processes, oxygen-enriched air is typically injected into the melt through a lance, generating bubbles that ascend and agitate the melt, enhancing mass, momentum, and heat transfer within the furnace. The melt’s viscosity, which varies across reaction stages, and the operating conditions influence bubble size and dynamics. This study investigates the interplay between melt viscosity and bubble diameter on bubble motion using numerical simulations and experiments. In particular, the volume of fluid (VOF) method and Ω-identification technique were employed to analyze bubble velocity, deformation, trajectories, and wake characteristics. The results showed that More >

  • Open AccessOpen Access

    ARTICLE

    Influence of Porous Coke on Flow and Heat Transfer Characteristics of Supercritical RP-3

    Yu Zhang1, Shang-Zhen Yu2, Jia-Jia Yu2,3,*
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1151-1169, 2025, DOI:10.32604/fdmp.2025.057804 - 30 May 2025
    Abstract RP-3 is a kind of aviation kerosene commonly used in hypersonic and scramjet engines due to its superior thermal stability, high energy density, and ability to act as a coolant before combustion. However, it is known that coke can be generated during the cooling process as a carbonaceous deposition on metal walls and its effects on the cooling performance are still largely unknown. To explore the influence mechanism of porous coke on heat transfer characteristics of supercritical RP-3 in the regenerative cooling channel, a series of computational simulations were conducted via a three-dimensional CFD… More >

  • Open AccessOpen Access

    ARTICLE

    Numerical Study on the Influence of Rectifier Grid on the Performances of a Cement Kiln’s SCR (Selective Catalytic Reduction) Denitrification Reactor

    Liang Ai1, Mingyue Li2, Lumin Chen1, Yihua Gao2, Yi Sun1, Yue Wu1, Fuping Qian1,*, Jinli Lu2, Naijin Huang3
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1171-1190, 2025, DOI:10.32604/fdmp.2025.055985 - 30 May 2025
    Abstract In this study, Computational Fluid Dynamics (CFD) together with a component transport model are exploited to investigate the influence of dimensionless parameters, involving the height of the rectifier grid and the installation height of the first catalyst layer, on the flow field and the overall denitration efficiency of a cement kiln’s SCR (Selective catalytic reduction) denitrification reactor. It is shown that accurate numerical results can be obtained by fitting the particle size distribution function to the actual cement kiln fly ash and implementing a non-uniform particle inlet boundary condition. The relative error between denitration More >

  • Open AccessOpen Access

    ARTICLE

    A Connectivity Model for the Numerical Simulation of Microgel Flooding in Low-Permeability Reservoirs

    Tao Wang1,2, Haiyang Yu1,*, Jie Gao2, Fei Wang2, Xinlong Zhang3,*, Hao Yang2, Guirong Di2, Pengrun Wang2
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1191-1200, 2025, DOI:10.32604/fdmp.2025.058865 - 30 May 2025
    Abstract Oilfields worldwide are increasingly grappling with challenges such as early water breakthrough and high water production, yet direct, targeted solutions remain elusive. In recent years, chemical flooding techniques designed for tertiary oil recovery have garnered significant attention, with microgel flooding emerging as a particularly prominent area of research. Despite its promise, the complex mechanisms underlying microgel flooding have been rarely investigated numerically. This study aims to address these gaps by characterizing the distribution of microgel concentration and viscosity within different pore structures. To enhance the accuracy of these characterizations, the viscosity of microgels is adjusted More >

  • Open AccessOpen Access

    ARTICLE

    4D Evolution of In-Situ Stress and Fracturing Timing Optimization in Shale Gas Wells

    Qi Deng1, Qi Ruan2, Bo Zeng1, Qiang Liu3, Yi Song1, Shen Cheng1, Huiying Tang2,*
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1201-1219, 2025, DOI:10.32604/fdmp.2025.060311 - 30 May 2025
    Abstract Over more than a decade of development, medium to deep shale gas reservoirs have faced rapid production declines, making sustained output challenging. To harness remaining reserves effectively, advanced fracturing techniques such as infill drilling are essential. This study develops a complex fracture network model for dual horizontal wells and a four-dimensional in-situ stress evolution model, grounded in elastic porous media theory. These models simulate and analyze the evolution of formation pore pressure and in-situ stress during production. The investigation focuses on the influence of infill well fracturing timing on fracture propagation patterns, individual well productivity, and… More >

  • Open AccessOpen Access

    ARTICLE

    Optimization of Guide Vane Geometry in a Pump-as-Turbine through an Orthogonal Test Approach

    Fengxia Shi1,2, Pengcheng Wang1,*, Haonan Zhan1, Xiangyun Shi1
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1221-1238, 2025, DOI:10.32604/fdmp.2025.062244 - 30 May 2025
    Abstract To investigate the impact of guide vane geometry—specifically, outlet angle, blade count, and radial height—on the performance of a Pump as Turbine (PAT), radial guide vanes were introduced upstream of the impeller in an IS80-50-315 low-specific-speed centrifugal PAT. Using an orthogonal test design, numerical simulations were conducted on 16 different PAT configurations, and the influence of vane geometry on performance was analyzed through a range analysis to determine the optimal parameter combinations. The results indicate that the number of guide vane blades significantly affects both the hydraulic efficiency and water head of the PAT under More >

  • Open AccessOpen Access

    ARTICLE

    Modeling Oil Production and Heat Distribution during Hot Water-Flooding in an Oil Reservoir

    Chinedu Nwaigwe1,2,*, Abdon Atangana2
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1239-1259, 2025, DOI:10.32604/fdmp.2025.059925 - 30 May 2025
    (This article belongs to the Special Issue: Fluid and Thermal Dynamics in the Development of Unconventional Resources II)
    Abstract In the early stages of oil exploration, oil is produced through processes such as well drilling. Later, hot water may be injected into the well to improve production. A key challenge is understanding how the temperature and velocity of the injected hot water affect the production rate. This is the focus of the current study. It proposes variable-viscosity mathematical models for heat and water saturation in a reservoir containing Bonny-light crude oil, with the aim of investigating the effects of water temperature and velocity on the recovery rate. First, two sets of experimental data are… More >

Per Page:

Share Link