Home / Journals / FDMP / Vol.21, No.8, 2025
Special Issues
Table of Content
cover

On the Cover

The rotary gas–gas heat exchanger (GGH) plays a key role in waste heat recovery and emission control systems. In this study, a full-scale numerical investigation is conducted to examine the temperature distribution characteristics of a rotary GGH, with particular focus on its circumferential thermal behavior under varying operating conditions. A local thermal non-equilibrium (LTNE) model is employed to distinguish the heat transfer dynamics between the solid matrix and the gas phase, while the multiple reference frame (MRF) approach is applied to capture the effects of rotation. Simulation results reveal that both the metallic heat exchange surfaces and the flue gas exhibit notable circumferential temperature fluctuations, whose intensity is strongly dependent on the rotational speed. At lower speeds, temperature fluctuations are more pronounced, resulting in a high non-uniformity coefficient of 4.296. Conversely, as the rotational speed increases from 0.1 rpm to 1 rpm, the non-uniformity coefficient decreases significantly to 0.4813, indicating improved temperature uniformity at higher speeds. These findings highlight the sensitivity of rotary GGH thermal performance to rotational speed and confirm the suitability of the adopted modeling approach for accurately predicting system behavior.
The cover image was produced with AI-generated content via Canva, and the authors verify that it contains no copyrighted elements or misleading representations.

View this paper

  • Open AccessOpen Access

    ARTICLE

    Performance Analysis of sCO2 Centrifugal Compressor under Variable Operating Conditions

    Jiangbo Wu1, Siyi Sun1, Xiaoze Du1,2,*
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 1789-1807, 2025, DOI:10.32604/fdmp.2025.064254 - 12 September 2025
    Abstract This study explores the aerodynamic performance and flow field characteristics of supercritical carbon dioxide (sCO2) centrifugal compressors under varying operating conditions. In particular, the Sandia main compressor impeller model is used as a reference system. Through three-dimensional numerical simulations, we examine the Mach number distribution, temperature field, blade pressure pulsation spectra, and velocity field evolution, and identify accordingly the operating boundaries ensuring stability and the mechanisms responsible for performance degradation. Findings indicate a stable operating range for mass flow rate between 0.74 and 3.74 kg/s. At the lower limit (0.74 kg/s), the maximum Mach number within… More >

  • Open AccessOpen Access

    ARTICLE

    Optimization-Based Correction of Turbulence Models for Flow Prediction in Control Valves

    Shuxun Li1,2, Yuhao Tian1,2,*, Guolong Deng1,2, Wei Li1,2, Yinggang Hu1,2, Xiaoya Wen1,2
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 1809-1837, 2025, DOI:10.32604/fdmp.2025.065877 - 12 September 2025
    Abstract The conventional Shear Stress Transport (SST) kω turbulence model often exhibits substantial inaccuracies when applied to the prediction of flow behavior in complex regions within axial flow control valves. To enhance its predictive fidelity for internal flow fields, this study introduces a novel calibration framework that integrates an artificial neural network (ANN) surrogate model with a particle swarm optimization (PSO) algorithm. In particular, an optimal Latin hypercube sampling strategy was employed to generate representative sample points across the empirical parameter space. For each sample, numerical simulations using ANSYS Fluent were conducted to evaluate the flow characteristics,… More >

  • Open AccessOpen Access

    ARTICLE

    Evaluation of Tubing Integrity with Rectangular Corrosion under Thermo-Chemical-Mechanical Coupling

    Yi Huang1,*, Ming Luo1, Zhujun Li1, Donglei Jiang1, Ping Xiao1, Mingyuan Yao2, Jia He2
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 1839-1860, 2025, DOI:10.32604/fdmp.2025.065459 - 12 September 2025
    (This article belongs to the Special Issue: Fluid and Thermal Dynamics in the Development of Unconventional Resources III)
    Abstract This study presents a comprehensive mechanical analysis of P110S oil tubing subjected to thermal and chemical coupling effects, with particular attention to the presence of rectangular corrosion defects. Drawing on the material’s stress–strain constitutive behavior, thermal expansion coefficient, thermal conductivity, and electrochemical test data, the research incorporates geometric nonlinearities arising from large deformations induced by corrosion. A detailed three-dimensional finite element (FE) model of the corroded P110S tubing is developed to simulate its response under complex loading conditions. The proposed model is rigorously validated through full-scale burst experiments and analytical calculations based on theoretical formulations.… More >

  • Open AccessOpen Access

    ARTICLE

    A Numerical Study of Fluid Velocity and Temperature Distribution in Regenerative Cooling Channels for Liquid Rocket Engines

    Liang Yin1,*, Huanqi Zhang2, Jie Ding1, Mehdi Khan1
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 1861-1873, 2025, DOI:10.32604/fdmp.2025.064187 - 12 September 2025
    Abstract In liquid rocket engines, regenerative cooling technology is essential for preserving structural integrity under extreme thermal loads. However, non-uniform coolant flow distribution within the cooling channels often leads to localized overheating, posing serious risks to engine reliability and operational lifespan. This study employs a three-dimensional fluid–thermal coupled numerical model to systematically investigate the influence of geometric parameters—specifically the number of inlets, the number of channels, and inlet manifold configurations—on flow uniformity and thermal distribution in non-pyrolysis zones. Key findings reveal that increasing the number of inlets from one to three significantly enhances flow uniformity, reducing… More >

  • Open AccessOpen Access

    ARTICLE

    Mechanisms and Mitigation of Heavy Oil Invasion into Drilling Fluids in Carbonate Reservoirs

    Yang Yu1,2, Sheng Fan1,2, Zhonglin Li1,2, Zhong He1,2, Jingwei Liu3,*, Peng Xu3,*
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 1875-1894, 2025, DOI:10.32604/fdmp.2025.066404 - 12 September 2025
    (This article belongs to the Special Issue: Fluid and Thermal Dynamics in the Development of Unconventional Resources III)
    Abstract Drilling operations in carbonate rock heavy oil blocks (e.g., in the Tahe Oilfield) are challenged by the intrusion of high-viscosity, temperature-sensitive formation heavy oil into the drilling fluid. This phenomenon often results in wellbore blockage, reduced penetration rates, and compromised well control, thereby significantly limiting drilling efficiency and operational safety. To address this issue, this study conducts a comprehensive investigation into the mechanisms governing heavy oil invasion using a combination of laboratory experiments and field data analysis. Findings indicate that the reservoir exhibits strong heterogeneity and that the heavy oil possesses distinctive physical properties. The… More >

  • Open AccessOpen Access

    ARTICLE

    Porous Media-Based Full-Scale Modeling of Thermal Behavior in Rotary Gas-Gas Heat Exchangers

    Chen Zhu1, Xiao Ma1, Lumin Chen2, Qi Ma1, Yi Sun1, Fuping Qian1,*
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 1895-1915, 2025, DOI:10.32604/fdmp.2025.067899 - 12 September 2025
    Abstract The rotary gas-gas heat exchanger (GGH) is a vital component in waste heat recovery systems, particularly for Selective Catalytic Reduction (SCR) processes employed in cement kiln operations. This study investigates the thermal performance of a rotary GGH in medium- and low-temperature denitrification systems, using a simplified porous medium model based on its actual internal structure. A porous medium representation is developed from the structural characteristics of the most efficient heat transfer element, and a local thermal non-equilibrium (LTNE) model is employed to capture the distinct thermal behaviors of the solid matrix and gas phase. To… More >

  • Open AccessOpen Access

    ARTICLE

    Experimental Investigation of Fracture Propagation Induced by Supercritical CO2 in Deep Shale Reservoirs

    Taizhi Shen1, Gang Chen1, Jiang Bai1, Dan Zhang2,*
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 1917-1934, 2025, DOI:10.32604/fdmp.2025.067114 - 12 September 2025
    Abstract Deep shale reservoirs are often associated with extreme geological conditions, including high temperatures, substantial horizontal stress differences, elevated closure stresses, and high breakdown pressures. These factors pose significant challenges to conventional hydraulic fracturing with water-based fluids, which may induce formation damage and fail to generate complex fracture networks. Supercritical carbon dioxide (SC-CO2), with its low viscosity, high diffusivity, low surface tension, and minimal water sensitivity, has attracted growing attention as an alternative fracturing fluid for deep shale stimulation. This study presents a series of true triaxial large-scale physical experiments using shale samples from the Longmaxi Formation More >

  • Open AccessOpen Access

    ARTICLE

    Numerical Simulation of Gas-Water Two-Phase Flow in a Proppant-Filled Layer

    Jian Yang1, Xinghao Gou1, Jiayi Sun2, Fei Liu1, Xiaojin Zhou1, Xu Liu1, Tao Zhang2,*
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 1935-1954, 2025, DOI:10.32604/fdmp.2025.066730 - 12 September 2025
    Abstract Shale gas production involves complex gas-water two-phase flow, with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency. In this study, 3D geometric models of 40/70 mesh ceramic particles and quartz sand proppant clusters were elaborated using computed tomography (CT) scanning. These models were used to develop a numerical simulation framework based on the lattice Boltzmann method (LBM), enabling the investigation of gas-water flow behavior within proppant-filled fractures under varying driving forces and surface tensions. Simulation results at a closure pressure of 15 MPa have revealed that ceramic particles exhibit a More >

  • Open AccessOpen Access

    ARTICLE

    Lattice Boltzmann-Based Numerical Simulation of Laser Welding in Solar Panel Busbars

    Dongfang Li1, Mingliang Zheng2,*
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 1955-1968, 2025, DOI:10.32604/fdmp.2025.069254 - 12 September 2025
    (This article belongs to the Special Issue: Model-Based Approaches in Fluid Mechanics: From Theory to industrial Applications)
    Abstract To address the limitations of traditional finite element methods, particularly the continuum assumption and difficulties in tracking the solid-liquid interface, this study introduces a lattice Boltzmann-based mathematical and physical model to simulate flow and heat transfer in the laser welding molten pool of tin-coated copper used in solar panel busbars (a thin strip or wire of conductive metal embedded on the surface of a solar cell to collect and conduct the electricity generated by the photovoltaic cell). The model incorporates key external forces, including surface tension, solid-liquid interface tension, and recoil pressure. A moving and… More >

  • Open AccessOpen Access

    ARTICLE

    Numerical Analysis of Mooring System Hydrodynamics under Irregular Wave Conditions

    Yini Shen, Azhar Halik*
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 1969-2000, 2025, DOI:10.32604/fdmp.2025.067813 - 12 September 2025
    (This article belongs to the Special Issue: Advances in Theoretical and Applied Wave Hydrodynamics)
    Abstract This study employs the Smoothed Particle Hydrodynamics (SPH) method to develop a computational fluid dynamics (CFD) model for analyzing the interaction between rogue waves and mooring systems. Four floating body configurations are investigated: (1) dual rectangular prisms, (2) rectangular prism–sphere composites, (3) sphere–rectangular prism composites, and (4) dual spheres. These configurations are systematically evaluated under varying mooring conditions to assess their hydrodynamic performance and wave attenuation capabilities. The model accurately captures the complex fluid–structure interaction dynamics between moored floating breakwaters and incident wave fields. Among the configurations, the dual rectangular prism system demonstrates superior performance More >

    Graphic Abstract

    Numerical Analysis of Mooring System Hydrodynamics under Irregular Wave Conditions

  • Open AccessOpen Access

    ARTICLE

    Ventilation Velocity vs. Airborne Infection Risk: A Combined CFD and Field Study of CO2 and Viral Aerosols

    Chuhan Zhao1,*, Souad Morsli2, Laurent Caramelle3, Mohammed El Ganaoui3
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 2001-2025, 2025, DOI:10.32604/fdmp.2025.068093 - 12 September 2025
    (This article belongs to the Special Issue: Materials and Energy an Updated Image for 2023)
    Abstract Carbon dioxide (CO2) is often monitored as a convenient yardstick for indoor air safety, yet its ability to stand in for pathogen-laden aerosols has never been settled. To probe the question, we reproduced an open-plan office at full scale (7.2 m 5.2 m 2.8 m) and introduced a breathing plume that carried 4% CO2, together with a polydisperse aerosol spanning 0.5–10 m (1320 particles s−1). Inlet air was supplied at 0.7, 1.4, and 2.1 m s−1, and the resulting fields were simulated with a Realisable – RANS model coupled to Lagrangian particle tracking. Nine strategically placed probes… More >

  • Open AccessOpen Access

    ARTICLE

    A Numerical Investigation of Smoke Propagation in Atrium Fires: Role of Make-Up Air Velocity and Fire Source Position with Polystyrene Fuel

    Mohamed Gamal1,#, Hamdy Ashour1,#, Omar Huzayyin2, Maran Marimuthu3, Ghulam E Mustafa Abro4,*, Lina Mohamed1
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 2027-2046, 2025, DOI:10.32604/fdmp.2025.067678 - 12 September 2025
    Abstract Atrium spaces, common in modern construction, provide significant fire safety challenges due to their large vertical openings, which facilitate rapid smoke spread and reduce sprinkler effectiveness. Traditional smoke management systems primarily rely on make-up air to replace the air expelled through vents. Inadequate calibration, particularly with air velocity, can worsen fire conditions by enhancing oxygen supply, increasing soot production, and reducing visibility, so endangering safe evacuation. This study investigates the impact of make-up air velocity on smoke behaviour in atrium environments through 24 simulations performed using the Fire Dynamics Simulator (FDS). Scenarios include various fire… More >

  • Open AccessOpen Access

    REVIEW

    Grouting Flow in Deep Fractured Rock: A State-of-the-Art Review of Theory and Practice

    Xuewei Liu1,2, Jinze Sun1,2, Bin Liu1,2,*, Yongshui Kang1,2, Yongchao Tian3, Yuan Zhou1,2, Quansheng Liu4
    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 2047-2073, 2025, DOI:10.32604/fdmp.2025.068268 - 12 September 2025
    Abstract Grouting is a widely applied technique for reinforcing fractured zones in deep soft rock tunnels. By infiltrating rock fissures, slurry materials enhance structural integrity and improve the overall stability of the surrounding rock. The performance of grouting is primarily governed by the flow behavior and diffusion extent of the slurry. This review considers recent advances in the theory and methodology of slurry flow and diffusion in fractured rock. It examines commonly used grout materials, including cement-based, chemical, and composite formulations, each offering distinct advantages for specific geological conditions. The mechanisms of reinforcement vary significantly across… More >

Per Page:

Share Link