Home / Journals / FDMP / Vol.7, No.3, 2011
Table of Content
  • Open Access

    ARTICLE

    Numerical Simulation of an Axisymmetric Compound Droplet by Three-Fluid Front-Tracking Method

    S. Homma1, M. Yokotsuka1, T. Tanaka1, K. Moriguchi1, J. Koga1, G. Tryggvason2
    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.3, pp. 231-240, 2011, DOI:10.3970/fdmp.2011.007.231
    Abstract We develop a three-fluid front-tracking method in order to simulate the motion of an axisymmetry compound droplet, which consists of three immiscible fluids separated by two different interfaces. The two interfaces of the compound droplet are represented by two different sets of the front-tracking elements immersed on the Eulerian grid mesh, where the velocities and the pressure are calculated. The density and viscosity profiles with jumps at the interfaces are successfully determined from the location and the connection information of the front-tracking elements. The motion of a compound droplet is simulated on axisymmetric cylindrical coordinates. The results show that the… More >

  • Open Access

    ARTICLE

    Comparison Between Different Immersed Boundary Conditions for Simulation of Complex Fluid Flows

    A. Mark1,2, R. Rundqvist1, F. Edelvik1
    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.3, pp. 241-258, 2011, DOI:10.3970/fdmp.2011.007.241
    Abstract In the literature immersed boundary methods are employed to simulate complex flows around moving arbitrary bodies without the necessity of remeshing. These methods employ a regular Eulerian mesh to simulate the fluid flow and a Lagrangian representation of the boundary of the bodies. The two representations can be coupled through an immersed boundary condition constraining the fluid to exactly follow the boundary of the bodies (immersed boundaries). Typically such methods suffer from accuracy problems, that arise from spurious mass fluxes over the immersed boundary (IB), pressure boundary conditions or high density ratios. The mirroring IB method Mark (2008); Mark and… More >

  • Open Access

    ARTICLE

    Modeling and Simulation of Sealing Spray Application Using Smoothed Particle Hydrodynamics

    Robert Rundqvist1, Andreas Mark1, Fredrik Edelvik1, Johan S. Carlsson1
    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.3, pp. 259-278, 2011, DOI:10.3970/fdmp.2011.007.259
    Abstract Multiphase flow simulation using Smoothed Particle Hydrodynamics (SPH) has gained interest during recent years, mostly due to the inherent flexibility of the method and the physically rather intuitive formulation of extra constitutive equations needed when dealing with for instance non-Newtonian flows. In the work presented here, simulations based on an SPH model implemented in the flow solver IBOFlow has been used for simulation of robotic application of sealing material on a car body. Application of sealing materials is done in order to prevent water leakage into cavities of the body, and to reduce noise. In off-line programming of the robots… More >

  • Open Access

    ARTICLE

    Binary Collisions of Immiscible Liquid Drops for Liquid Encapsulation

    Carole Planchette1, Elise Lorenceau1, Günter Brenn2
    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.3, pp. 279-302, 2011, DOI:10.3970/fdmp.2011.007.279
    Abstract This work is dedicated to a general description of collisions between two drops of immiscible liquids. Our approach is mainly experimental and allows us to describe the outcomes of such collisions according to a set of relevant parameters. Varying the relative velocity U as well as the impact parameter X we can build for each pair of investigated liquids a nomogram X,U showing three possible regimes: coalescence, head-on separation and off-center separation. In this paper, we also study the influence of the liquid properties, i.e. viscosity, density, surface and interfacial tensions using a set of aqueous glycerol solutions together with… More >

  • Open Access

    ARTICLE

    A VOF-Based Conservative Method for the Simulation of Reactive Mass Transfer from Rising Bubbles

    D. Bothe1,2, M. Kröger1, H.-J. Warnecke3
    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.3, pp. 303-316, 2011, DOI:10.3970/fdmp.2011.007.303
    Abstract In this paper numerical results on reactive mass transfer from single gas bubbles to a surrounding liquid are presented. The underlying numerical method is based on the solution of the incompressible two-phase Navier-Stokes equations. The Volume-of-Fluid method is applied for the description of the liquid-gas interface. Within the numerical approach the concentration of the transfer component is represented by two separate variables, one for each phase. Numerical results are in good agreement with experimental data. More >

  • Open Access

    ARTICLE

    Viscoelastic Drop Deformation in a Micro-Contraction

    Malcolm R. Davidson1, Dalton J.E. Harvie1
    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.3, pp. 317-328, 2011, DOI:10.3970/fdmp.2011.007.317
    Abstract A volume-of-fluid numerical method, adapted by the authors [Harvie, Cooper-White and Davidson (2008)] to simulate the flow of viscoelastic fluids, is used to predict deformation of a viscoelastic droplet carried by an immiscible Newtonian liquid through an axisymmetric microfluidic contraction-expansion. Values of the capillary number and elasticity number are chosen based on corresponding values for a rectangular contraction for which a reentrant cavity at the rear of the drop and subsequent encapsulation behaviour was observed experimentally by Harvie, Cooper-White and Davidson (2008). A reentrant cavity, similar to the observed one, is predicted; however, encapsulation is not achieved. Unexpectedly, a narrow… More >

Share Link

WeChat scan