Home / Journals / CMES / Vol.95, No.6, 2013
Special Issues
Table of Content
  • Open AccessOpen Access

    ARTICLE

    A Non-probabilistic Reliability-based Optimization of Structures Using Convex Models

    Fangyi Li1,2, Zhen Luo3, Jianhua Rong1, Lin Hu1
    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.6, pp. 453-482, 2013, DOI:10.3970/cmes.2013.095.453
    Abstract This paper aims to propose a non-probabilistic reliability-based multiobjective optimization method for structures with uncertain-but-bounded parameters. A combination of the interval and ellipsoid convex models is used to account for the different groups of uncertain parameters, in which the interval model accounts for uncorrelated parameters, while the ellipsoid model is applied to correlated parameters. The design is then formulated as a nested double-loop optimization problem. A multi-objective genetic algorithm is used in the out loop optimization to optimize the design vector for evaluating the objectives, and the Sequential Quadratic Programming (SQP) algorithm is applied in… More >

  • Open AccessOpen Access

    ARTICLE

    Numerical and Experimental Investigations of Jet Impingement on a Periodically Oscillating-Heated Flat Plate

    A. Balabel1,2,3, W. A. El-askary2, S. Wilson2
    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.6, pp. 483-499, 2013, DOI:10.3970/cmes.2013.095.483
    Abstract In the present paper, the impingement of air jet on a heated flat plate subjected to a periodic oscillation is numerically and experimentally investigated. The motivation of the present research is the desire to enhance the heat transfer characteristics during the cooling process of a heated flat plate which can be found in many relevance industrial applications. In order to improve the heat transfer characteristics, a novel idea is utilized, where a periodical oscillation movement in form of sine wave produced from a Scotch yoke mechanism is applied to the heated flat plate. The obtained More >

  • Open AccessOpen Access

    ARTICLE

    Numerical Evalution of Eshelby’s Tensor of Anisotropic Ferromagnetic Shape Memory Alloy and Its Influence on Magnetic Field-induced Strain

    Yuping Zhu1,2, Tao Shi1, Yuanbing Wang1
    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.6, pp. 501-517, 2013, DOI:10.3970/cmes.2013.095.501
    Abstract Single crystal ferromagnetic shape memory alloy is a kind of new intelligent materials, it shows obvious anisotropy. Micromechanics theory has been used to analyze the whole mechanical behaviors of this material. However, Eshelby’s tensor of this material which plays an important role has still not solved efficiently. Based on the existing micromechanics constitutive model, this paper analyzes the numerical calculation formula of Eshelby’s tensor of anisotropic ferromagnetic shape memory alloy. Adopting the way of Gauss integral, the optimal Gaussian integral points for different inclusion shapes and the corresponding numerical solution of Eshelby’s tensor are obtained.Furthermore, More >

  • Open AccessOpen Access

    ARTICLE

    Interactions of Three Parallel Square-Hole Cracks in an Infinite Plate Subjected to Internal Pressure

    Changqing Miao1, Yintao Wei2, Xiangqiao Yan1
    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.6, pp. 519-534, 2013, DOI:10.3970/cmes.2013.095.519
    Abstract By using a hybrid displacement discontinuity method, the interactions of three parallel square-hole cracks in an infinite plate subjected to internal pressure are investigated in this paper. Numerical examples are included to illustrate that the numerical approach is very simple and effective for calculating the stress intensity factors (SIFs) of complex plane crack problems. Many numerical results of the SIFs are given and discussed. It is found that a square hole has a shielding effect on crack(s) emanating from the hole. The finding perhaps has an important meaning in engineering. More >

Per Page:

Share Link