Vol.122, No.3, 2020-Table of Contents
  • Web of Science search for CMES: Specify the source (journal title) as “CMES*”. For example, to search for topic “deep learning” in CMES, use “ts=(deep learning) and so=(CMES*)”. More details are given in this page.

  • Real-Time Thermomechanical Modeling of PV Cell Fabrication via a POD-Trained RBF Interpolation Network
  • Abstract This paper presents a numerical reduced order model framework to simulate the physics of the thermomechanical processes that occur during c-Si photovoltaic (PV) cell fabrication. A response surface based on a radial basis function (RBF) interpolation network trained by a Proper Orthogonal Decomposition (POD) of the solution fields is developed for fast and accurate approximations of thermal loading conditions on PV cells during the fabrication processes. The outcome is a stand-alone computational tool that provides, in real time, the quantitative and qualitative thermomechanical response as a function of user-controlled input parameters for fabrication processes with the precision of 3D finite… More
  •   Views:1011       Downloads:526        Download PDF
  • Multiscale Isogeometric Topology Optimization with Unified Structural Skeleton
  • Abstract This paper proposes a multiscale isogeometric topology optimization (ITO) method where the configuration and layout of microstructures are optimized simultaneously. At micro scale, a shape deformation method is presented to transform a prototype microstructure (PM) for obtaining a series of graded microstructures (GMs), where microstructural skeleton based on the level set framework is applied to retain more topology features and improve the connectability. For the macro scale calculation, the effective mechanical properties can be estimated by means of the numerical homogenization method. By adopting identical non-uniform rational basis splines (NURBS) as basis functions for both parameterized level set model and… More
  •   Views:779       Downloads:608        Download PDF
  • Application of Smooth Particle Hydrodynamics Method for Modelling Blood Flow with Thrombus Formation
  • Abstract Thrombosis plays a crucial role in atherosclerosis or in haemostasis when a blood vessel is injured. This article focuses on using a meshless particle-based Lagrangian numerical technique, the smoothed particles hydrodynamic (SPH) method, to study the flow behaviour of blood and to explore the flow parameters that induce formation of a thrombus in a blood vessel. Due to its simplicity and effectiveness, the SPH method is employed here to simulate the process of thrombogenesis and to study the effect of various blood flow parameters. In the present SPH simulation, blood is modelled by two sets of particles that have the… More
  •   Views:1207       Downloads:492        Download PDF
  • Implementation of PSOANN Optimized PI Control Algorithm for Shunt Active Filter
  • Abstract This paper proposes the optimum controller for shunt active filter (SAF) to mitigate the harmonics and maintain the power quality in the distribution system. It consists of shunt active filter, Voltage Source Inverter (VSI), series inductor and DC bus and nonlinear load. The proposed hybrid approach is a combination of Particle Swarm Optimization (PSO) and Artificial Neural Network (ANN) termed as PSOANN. The PI controller gain parameters of kp and ki are optimized with the help of PSOANN. The PSOANN improves the accuracy of tuning the gain parameters under steady and dynamic load conditions; thereby it reduces the values of… More
  •   Views:944       Downloads:474        Download PDF
  • Impact Dynamics of a Dragonfly Wing
  • Abstract The lift force was reported not to be high enough to support the dragonfly’s weight during flight in some conventional investigations, and higher lift force is required for its takeoff. In this study, by employing a thin plate model, impact effect is investigated for the wing deformation in dragonfly flapping during takeoff. The static displacement is formulated to compare with the dynamical displacement caused by impact. The governing equation of motion for the impact dynamics of a dragonfly wing is derived based on Newton’s second law. Separation of variables technique and assumed modes method are introduced to solve the resulting… More
  •   Views:922       Downloads:391        Download PDF
  • Stability and Bifurcation Analysis of a Discrete Predator-Prey Model with Mixed Holling Interaction
  • Abstract In this paper, a discrete Lotka-Volterra predator-prey model is proposed that considers mixed functional responses of Holling types I and III. The equilibrium points of the model are obtained, and their stability is tested. The dynamical behavior of this model is studied according to the change of the control parameters. We find that the complex dynamical behavior extends from a stable state to chaotic attractors. Finally, the analytical results are clarified by some numerical simulations. More
  •   Views:902       Downloads:412        Download PDF
  • On the Simulation of Fragmentation During the Process of Ceramic Tile Impacted by Blunt Projectile with SPH Method in LS-DYNA
  • Abstract Ceramics are extensively used in protective structures which are often subjected to projectile impacts. During an impact process of a ceramic target by a projectile, fragmentation occurs in both the target and the projectile. It is challenging to simulate such events and predict residual mass and velocity of the projectile. In this work, we attempt to use smoothed particle hydrodynamics (SPH) in LS-DYNA to reproduce fragmentation of the target and the projectile and predict residual mass and velocity of the projectile during a projectile impact of a ceramic target. SPH models for an alumina ceramic tile impacted by a blunt… More
  •   Views:1036       Downloads:491        Download PDF
  • A Unified Dimensionless Parameter for Finite Element Mesh for Beams Resting on Elastic Foundation
  • Abstract Discretising a structure into elements is a key step in finite element (FE) analysis. The discretised geometry used to formulate an FE model can greatly affect accuracy and validity. This paper presents a unified dimensionless parameter to generate a mesh of cubic FEs for the analysis of very long beams resting on an elastic foundation. A uniform beam resting on elastic foundation with various values of flexural stiffness and elastic supporting coefficients subject to static load and moving load is used to illustrate the application of the proposed parameter. The numerical results show that (a) Even if the values of… More
  •   Views:900       Downloads:387        Download PDF
  • Analysis of Naval Ship Evacuation Using Stochastic Simulation Models and Experimental Data Sets
  • Abstract The study of emergency evacuation in public spaces, buildings and large ships may present parallel characteristic in terms of complexity of the layout but there are also significant differences that can hindering passengers to reach muster stations or the lifeboats. There are many hazards on a ship that can cause an emergency evacuation, the most severe result in loss of lives. Providing safe and effective evacuation of passengers from ships in an emergency situation becomes critical. Recently, computer simulation has become an indispensable technology in various fields, among them, the evacuation models that recently evolved incorporating human behavioral factors. In… More
  •   Views:782       Downloads:636        Download PDF
  • Multi-Scale Damage Model for Quasi-Brittle Composite Materials
  • Abstract In the present paper, a hierarchical multi-scale method is developed for the nonlinear analysis of composite materials undergoing heterogeneity and damage. Starting from the homogenization theory, the energy equivalence between scales is developed. Then accompanied with the energy based damage model, the multi-scale damage evolutions are resolved by homogenizing the energy scalar over the meso-cell. The macroscopic behaviors described by the multi-scale damage evolutions represent the mesoscopic heterogeneity and damage of the composites. A rather simple structure made from particle reinforced composite materials is developed as a numerical example. The agreement between the fullscale simulating results and the multi-scale simulating… More
  •   Views:1023       Downloads:554        Download PDF
  • An Equivalent Strain Based Multi-Scale Damage Model of Concrete
  • Abstract A multi-scale damage model of concrete is proposed based on the concept of energy equivalent strain for generic two- or three-dimensional applications. Continuum damage mechanics serves as the framework to describe the basic damage variables, namely the tensile and compressive damage. The homogenized Helmholtz free energy is introduced as the bridge to link the micro-cell and macroscopic material. The crack propagation in micro-cells is modeled, and the Helmholtz free energy in the cracked micro-structure is calculated and employed to extract the damage evolution functions in the macroscopic material. Based on the damage energy release rates and damage consistent condition, the… More
  •   Views:1054       Downloads:508        Download PDF
  • A Lane Detection Method Based on Semantic Segmentation
  • Abstract This paper proposes a novel method of lane detection, which adopts VGG16 as the basis of convolutional neural network to extract lane line features by cavity convolution, wherein the lane lines are divided into dotted lines and solid lines. Expanding the field of experience through hollow convolution, the full connection layer of the network is discarded, the last largest pooling layer of the VGG16 network is removed, and the processing of the last three convolution layers is replaced by hole convolution. At the same time, CNN adopts the encoder and decoder structure mode, and uses the index function of the… More
  •   Views:1049       Downloads:574        Download PDF
  • Dimensionless Variation of Seepage in Porous Media with Cracks Stimulated by Low-Frequency Vibration
  • Abstract Pulse excitation or vibration stimulation was imposed on the low permeable formation with cracks to enhance the production or injection capacity. During that process, a coupling of wave-induced flow and initial flow in dual-porous media was involved. Researchers had done much work on the rule of wave propagation in fractured porous media, whereas attentions on the variation law of flow in developing low permeable formation with cracks under vibration stimulation were not paid. In this study, the effect of low-frequency vibration on the seepage in dual-porous media was examined for the application of wave stimulation technology in developing reservoirs with… More
  •   Views:958       Downloads:447        Download PDF
  • Integral Transform Method for a Porous Slider with Magnetic Field and Velocity Slip
  • Abstract Current research is about the injection of a viscous fluid in the presence of a transverse uniform magnetic field to reduce the sliding drag. There is a slip-on both the slider and the ground in the two cases, for example, a long porous slider and a circular porous slider. By utilizing similarity transformation Navier-Stokes equations are converted into coupled equations which are tackled by Integral Transform Method. Solutions are obtained for different values of Reynolds numbers, velocity slip, and magnetic field. We found that surface slip and Reynolds number has a substantial influence on the lift and drag of long… More
  •   Views:943       Downloads:447        Download PDF
  • Multiresolution Isogeometric Topology Optimisation Using Moving Morphable Voids
  • Abstract A general and new explicit isogeometric topology optimisation approach with moving morphable voids (MMV) is proposed. In this approach, a novel multiresolution scheme with two distinct discretisation levels is developed to obtain high-resolution designs with a relatively low computational cost. Ersatz material model based on Greville abscissae collocation scheme is utilised to represent both the Young’s modulus of the material and the density field. Two benchmark examples are tested to illustrate the effectiveness of the proposed method. Numerical results show that high-resolution designs can be obtained with relatively low computational cost, and the optimisation can be significantly improved without introducing… More
  •   Views:1044       Downloads:603        Download PDF