Home / Journals / CMES / Vol.126, No.1, 2021
Table of Content
  • Open AccessOpen Access

    EDITORIAL

    Introduction to the Special Issue on Design and Simulation in Additive Manufacturing

    Di Wang1, Yongqiang Yang1,*, Yingjun Wang1,*, Li Yang2, Hao Wang3, Shoufeng Yang4
    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 1-4, 2021, DOI:10.32604/cmes.2021.015180
    (This article belongs to this Special Issue: Design & simulation in Additive Manufacturing)
    Abstract This article has no abstract. More >

  • Open AccessOpen Access

    ARTICLE

    Mesoscopic-Scale Numerical Investigation Including the Inuence of Process Parameters on LPBF Multi-Layer Multi-Path Formation

    Liu Cao*
    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 5-23, 2021, DOI:10.32604/cmes.2021.014693
    (This article belongs to this Special Issue: Design & simulation in Additive Manufacturing)
    Abstract As a typical laser additive manufacturing technology, laser powder bed fusion (LPBF) has achieved demonstration applications in aerospace, biomedical and other fields. However, how to select process parameters quickly and reasonably is still the main concern of LPBF production. In order to quantitatively analyze the inuence of different process parameters (laser power, scanning speed, hatch space and layer thickness) on the LPBF process, the multi-layer and multi-path forming process of LPBF was predicted based on the open-source discrete element method framework Yade and the open-source finite volume method framework OpenFOAM. Based on the design of experiments method, a four-factor three-level… More >

  • Open AccessOpen Access

    ARTICLE

    A Meshless Collocation Method with Barycentric Lagrange Interpolation for Solving the Helmholtz Equation

    Miaomiao Yang, Wentao Ma, Yongbin Ge*
    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 25-54, 2021, DOI:10.32604/cmes.2021.012575
    Abstract In this paper, Chebyshev interpolation nodes and barycentric Lagrange interpolation basis function are used to deduce the scheme for solving the Helmholtz equation. First of all, the interpolation basis function is applied to treat the spatial variables and their partial derivatives, and the collocation method for solving the second order differential equations is established. Secondly, the differential equations on a given test node. Finally, based on three kinds of test nodes, numerical experiments show that the present scheme can not only calculate the high wave numbers problems, but also calculate the variable wave numbers problems. In addition, the algorithm has… More >

  • Open AccessOpen Access

    ARTICLE

    Multiquadric Radial Basis Function Approximation Scheme for Solution of Total Variation Based Multiplicative Noise Removal Model

    Mushtaq Ahmad Khan1,*, Ahmed B. Altamimi2, Zawar Hussain Khan3, Khurram Shehzad Khattak3, Sahib Khan4,*, Asmat Ullah3, Murtaza Ali1
    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 55-88, 2021, DOI: 10.32604/cmes.2021.011163
    Abstract This article introduces a fast meshless algorithm for the numerical solution nonlinear partial differential equations (PDE) by Radial Basis Functions (RBFs) approximation connected with the Total Variation (TV)-based minimization functional and to show its application to image denoising containing multiplicative noise. These capabilities used within the proposed algorithm have not only the quality of image denoising, edge preservation but also the property of minimization of staircase effect which results in blocky effects in the images. It is worth mentioning that the recommended method can be easily employed for nonlinear problems due to the lack of dependence on a mesh or… More >

  • Open AccessOpen Access

    ARTICLE

    Hybrid Security Assessment Methodology for Web Applications

    Roddy A. Correa1, Juan Ramón Bermejo Higuera2, Javier Bermejo Higuera2, Juan Antonio Sicilia Montalvo2, Manuel Sánchez Rubio2, Á. Alberto Magreñán3,*
    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 89-124, 2021, DOI:10.32604/cmes.2021.010700
    Abstract This study presents a methodology to evaluate and prevent security vulnerabilities issues for web applications. The analysis process is based on the use of techniques and tools that allow to perform security assessments of white box and black box, to carry out the security validation of a web application in an agile and precise way. The objective of the methodology is to take advantage of the synergies of semi-automatic static and dynamic security analysis tools and manual checks. Each one of the phases contemplated in the methodology is supported by security analysis tools of different degrees of coverage, so that… More >

  • Open AccessOpen Access

    ARTICLE

    Isogeometric Boundary Element Analysis for 2D Transient Heat Conduction Problem with Radial Integration Method

    Leilei Chen1, Kunpeng Li1, Xuan Peng2, Haojie Lian3,4,*, Xiao Lin5, Zhuojia Fu6
    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 125-146, 2021, DOI:10.32604/cmes.2021.012821
    Abstract This paper presents an isogeometric boundary element method (IGABEM) for transient heat conduction analysis. The Non-Uniform Rational B-spline (NURBS) basis functions, which are used to construct the geometry of the structures, are employed to discretize the physical unknowns in the boundary integral formulations of the governing equations. B´ezier extraction technique is employed to accelerate the evaluation of NURBS basis functions. We adopt a radial integration method to address the additional domain integrals. The numerical examples demonstrate the advantage of IGABEM in dimension reduction and the seamless connection between CAD and numerical analysis. More >

  • Open AccessOpen Access

    ARTICLE

    CFD-Based Simulation and Analysis of Hydrothermal Aspects in Solar Channel Heat Exchangers with Various Designed Vortex Generators

    Mohamed Salmi1,2, Younes Menni3, Ali J. Chamkha4,5,*, Houari Ameur6, Rachid Maouedj7, Ahmed Youcef7
    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 147-173, 2021, DOI:10.32604/cmes.2021.012839
    Abstract The hydrothermal behavior of air inside a solar channel heat exchanger equipped with various shaped ribs is analyzed numerically. The bottom wall of the exchanger is kept adiabatic, while a constant value of the temperature is set at the upper wall. The duct is equipped with a flat rectangular fin on the upper wall and an upstream V-shaped baffle on the lower wall. Furthermore, five hot wall-attached rib shapes are considered: trapezoidal, square, triangular pointing upstream (type I), triangular pointing downstream (type II), and equilateral-triangular (type III) cross sections. Effects of the flow rates are also inspected for various Reynolds… More >

  • Open AccessOpen Access

    ARTICLE

    A Novel BEM for Modeling and Simulation of 3T Nonlinear Generalized Anisotropic Micropolar-Thermoelasticity Theory with Memory Dependent Derivative

    Mohamed Abdelsabour Fahmy1,2,*
    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 175-199, 2021, DOI:10.32604/cmes.2021.012218
    Abstract The main aim of this paper is to propose a new memory dependent derivative (MDD) theory which called threetemperature nonlinear generalized anisotropic micropolar-thermoelasticity. The system of governing equations of the problems associated with the proposed theory is extremely difficult or impossible to solve analytically due to nonlinearity, MDD diffusion, multi-variable nature, multi-stage processing and anisotropic properties of the considered material. Therefore, we propose a novel boundary element method (BEM) formulation for modeling and simulation of such system. The computational performance of the proposed technique has been investigated. The numerical results illustrate the effects of time delays and kernel functions on… More >

  • Open AccessOpen Access

    ARTICLE

    Essential Features Preserving Dynamics of Stochastic Dengue Model

    Wasfi Shatanawi1,2,3, Ali Raza4,5,*, Muhammad Shoaib Arif4, Muhammad Rafiq6, Mairaj Bibi7, Muhammad Mohsin8
    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 201-215, 2021, DOI:10.32604/cmes.2021.012111
    Abstract Nonlinear stochastic modelling plays an important character in the different fields of sciences such as environmental, material, engineering, chemistry, physics, biomedical engineering, and many more. In the current study, we studied the computational dynamics of the stochastic dengue model with the real material of the model. Positivity, boundedness, and dynamical consistency are essential features of stochastic modelling. Our focus is to design the computational method which preserves essential features of the model. The stochastic non-standard finite difference technique is most efficient as compared to other techniques used in literature. Analysis and comparison were explored in favour of convergence. Also, we… More >

  • Open AccessOpen Access

    ARTICLE

    Fracture Reactivation Modeling in a Depleted Reservoir

    Mengtao Cao1,2, Weiguo Liang1,2, Shunde Yin3,*, Maurice B. Dusseault4
    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 217-239, 2021, DOI:10.32604/cmes.2021.011823
    Abstract Injection-induced fracture reactivation during hydraulic fracturing processes in shale gas development as well as coal bed methane (CBM) and other unconventional oil and gas recovery is widely investigated because of potential permeability enhancement impacts. Less attention is paid to induced fracture reactivation during oil and gas production and its impacts on reservoir permeability, despite its relatively common occurrence. During production, a reservoir tends to shrink as effective stresses increase, and the deviatoric effective stresses also increase. These changes in the principal effective stresses may cause Coulomb fracture slip in existing natural fractures, depending on their strength, orientation, and initial stress… More >

Per Page:

Share Link

WeChat scan