Special Issue "Design & simulation in Additive Manufacturing"

Submission Deadline: 31 March 2020 (closed)
Guest Editors
Prof. Yongqiang Yang, South China University of Technology, China
Prof. Shoufeng Yang, KU Leuven, Belgium.
Prof. Li Yang, University of Louisville, USA.
Prof. Hao Wang, National University of Singapore, Singapore
Prof. Di Wang, South China University of Technology, China
Prof. Yingjun Wang, South China University of Technology, China


Additive Manufacturing (AM) is a process of joining materials to make objects from 3D model data, usually layer upon layer. There are barriers and challenges bordering the development of AM. First, there are many complex multi-physics phenomena during most AM processes, such as molten pool dynamic problem and spatter problem. Second, the comprehensive interaction effect among factors like materials, the support of component, heat transfer and operation parameters, result in manufacturing defects. Third, the freeform design based on AM usually is applied in multi-phase or strict conditions that are difficult to measure or analyze. The newly CAD design methods and numerical simulation, as well as other computational approaches are key to solve these problems and push the development of AM.

With the rapid growth of researches in additive manufacturing, we initiate this special issue to highlight the recent developments with simulation and computational approaches in AM. This special issue seeks original manuscripts to investigate the theory, design, optimization, simulation and process of AM. Papers which deal with multi-physics problems, as well as those which deal with the interfaces of mechanics, chemistry, and biology, are particularly encouraged. Various length scales (quantum, nano, micro, meso, and macro), and various time scales (femtoseconds to hours) are of interest. Both experimental and modeling submissions are encouraged.
Potential topics included but are not limited to: 
(1) Design, modeling, simulation and analysis based on AM.
(2) Simulation of microstructure stability and evolution during or after the AM process.
(3) Simulation of multi-physics problems in AM, such as molten pool dynamic problem, spatter problem, ejection and injection problems.
(4) AM process enhancements and numerical simulation, such as thermal deformation, crack. 
(5) Microstructure and property relationship of the AM components.
(6) Biomedical, energy and other novel applications of AM.
(7) Multi-materials, multi-technology(hybrid) processes and machines enhancements with simulation analysis.
(8) Other related topics…

Additive Manufacturing; Computational Physics; Numerical Simulation; Computational Fluid Dynamics; Mechanical Property; Topology Optimization.

Published Papers

  • Inverse Construction Methods of Heterogeneous NURBS Object Based on Additive Manufacturing
  • Abstract According to the requirement of heterogeneous object modeling in additive manufacturing (AM), the Non-Uniform Rational B-Spline (NURBS) method has been applied to the digital representation of heterogeneous object in this paper. By putting forward the NURBS material data structure and establishing heterogeneous NURBS object model, the accurate mathematical unified representation of analytical and free heterogeneous objects have been realized. With the inverse modeling of heterogeneous NURBS objects, the geometry and material distribution can be better designed to meet the actual needs. Radical Basis Function (RBF) method based on global surface reconstruction and the tensor product surface interpolation method are combined… More
  •   Views:1657       Downloads:1187        Download PDF

  • Design and Manufacture of Bionic Porous Titanium Alloy Spinal Implant Based on Selective Laser Melting (SLM)
  • Abstract In order to meet the clinical requirements of spine surgery, this paper proposed the exploratory research of computer-aided design and selective laser melting (SLM) fabrication of a bionic porous titanium spine implant. The structural design of the spinal implant is based on CT scanning data to ensure correct matching, and the mechanical properties of the implant are verified by simulation analysis and laser selective melting experiment. The surface roughness of the spinal implant manufactured by SLM without post-processing is Ra 15 μm, and the implant is precisely jointed with the photosensitive resin model of the upper and lower spine. The… More
  •   Views:2150       Downloads:1888        Download PDF

  • A New Finite Element Model with Manufactured Error for Additive Manufacturing
  • Abstract Additive manufacturing (AM), adding materials layer by layer, can be used to produce objects of almost any shape or geometry. However, AM techniques cannot accurately build parts with large overhangs, especially for the large features close to horizontal, hanging over the void. The overhangs will make the manufactured model deviate from the design model, which will result in the performance of the manufactured model that cannot satisfy the design requirements. In this paper, we will propose a new finite element (FE) analysis model that includes the manufacturing errors by mimicking the AM layer by layer construction process. In such FE… More
  •   Views:1823       Downloads:1782       Cited by:2        Download PDF

  • Numerical Simulation of Multi-Layer Penetration Process of Binder Droplet in 3DP Technique
  • Abstract This paper studies the binder droplet injection process in the 3DP technique. The mathematical model of the binder penetration process for multi-nozzle and multi-layer in 3DP technique is established, by using the conservation Level set method. According to the two-dimensional plane model of three-dimensional spatial structure of sand bed, the construction method of an equivalent cylindrical mapping infiltration model is proposed to represent the porosity of the model in the two-dimensional plane, which is exactly the same as that in the three-dimensional space, as well as closer to the arrangement of the three-dimensional space, and to realize the differentiation between… More
  •   Views:2393       Downloads:1797       Cited by:1        Download PDF

  • Investigation into Spatter Particles and Their Effect on the Formation Quality During Selective Laser Melting Processes
  • Abstract During the selective laser melting process, a high-energy laser beam acts on the powder, a molten pool is rapidly generated and the characteristic parameters are constantly changing. Among them, temperature is one of the important parameters in the forming process. Due to the generation of splash particles, there will be defects in the microstructure, which will seriously affect the formation quality of the prepared parts. Therefore, it is necessary to study the relationships between the splash behavior, molten pool characteristics and product quality. The finite element simulation of the transient temperature field was performed by ANSYS software. Time-series images at… More
  •   Views:2323       Downloads:2523       Cited by:1        Download PDF

  • Novel Micromixer with Complex 3D-Shape Inner Units: Design, Simulation and Additive Manufacturing
  • Abstract In this paper, a novel micromixer with complex 3D-shape inner units was put forward and fabricated by metal Additive Manufacturing (AM). The design of the micromixer combined the constraints of selective laser melting technology and the factors to improve mixing efficiency. Villermaux-Dushman reaction system and Compute Fluid Design (CFD) simulation were conducted to investigate the performance and the mechanism of this novel micromixer to improve mixing efficiency. The research found that the best mixing efficiency of this novel micromixer could be gained when the inner units divided fluid into five pieces with a uniform volume. Compared with a conventional micromixer… More
  •   Views:2472       Downloads:1840        Download PDF