Open Access
ARTICLE
Heng Xie1, Seiichi Koshizuka2, Yoshiaki Oka2
CMES-Computer Modeling in Engineering & Sciences, Vol.18, No.1, pp. 1-16, 2007, DOI:10.3970/cmes.2007.018.001
Abstract A model of a single liquid drop colliding on solid surface is developed based with Moving Particle Semi-implicit (MPS) method. The mathematical model involves gravity, viscosity and surface tension. The wettability between the impact liquid and the solid surface is modeled by the contact angle model and the non-slip boundary condition. The particles of the drop are divided into four types in which the model varies to simulate the liquid particles in different area. The model is validated by the comparison of the theoretical results. The complete dynamic process including the spreading, the recoiling, re-bouncing and splashing is simulated and… More >
Open Access
ARTICLE
R. Amirante1, L.A. Catalano2, A. Dadone1, V.S.E. Daloiso1
CMES-Computer Modeling in Engineering & Sciences, Vol.18, No.1, pp. 17-30, 2007, DOI:10.3970/cmes.2007.018.017
Abstract This paper proposes a gradient-based progressive optimization technique, which can be efficiently combined with black-box simulation codes. Its efficiency relies on the simultaneous convergence of the flow solution, of the gradient evaluation, and of the design update, as well as on the use of progressively finer grids. The developed numerical technique has general validity and is here applied to the fluid-dynamic design optimization of the intake of a small-size turbojet engine, at high load and zero flight speed. Two simplified design criteria are proposed, which avoid simulating the flow in any turbojet components other than the intake itself. Using a… More >
Open Access
ARTICLE
Ehsan Jabbari1, Behrouz Gatmiri2,3
CMES-Computer Modeling in Engineering & Sciences, Vol.18, No.1, pp. 31-44, 2007, DOI:10.3970/cmes.2007.018.031
Abstract In this paper after a discussion about the evolution of the unsaturated soils' governing differential equations and a brief history of the Green's functions for porous media, the governing equations, i.e., the mathematical model in the presence of heat effects are presented and simplified so as the derivation of the associated Green's functions be in the realm of possibility. The thermal two- and three-dimensional, full- and half-space Green's functions for unsaturated porous media, although in a relatively simplified form, are being introduced for the first time, following the previous works of the authors. The derived Green's functions have been demonstrated… More >
Open Access
ARTICLE
M. Heshmatzadeh, G. E. Bridges1
CMES-Computer Modeling in Engineering & Sciences, Vol.18, No.1, pp. 45-58, 2007, DOI:10.3970/cmes.2007.018.045
Abstract Cell Method, a Finite Formulation technique, is compared in detail with the Finite Element Method (FEM), a differential-based numerical technique. In the finite formulation technique, Poisson's equation is described starting from a topological foundation. The final set of algebraic equations resulting from the two approaches are compared in matrix form. The equivalence of the coefficient matrices is proven for a Voronoi dual mesh and linear shape functions in the FEM. The difference between the source (charge) vectors in the two approaches is described. It is shown that the use of linear shape functions in the FEM is equivalent to the… More >
Open Access
ARTICLE
N. Mai-Duy1, L. Mai-Cao2, T. Tran-Cong3
CMES-Computer Modeling in Engineering & Sciences, Vol.18, No.1, pp. 59-78, 2007, DOI:10.3970/cmes.2007.018.059
Abstract In this paper, an indirect/integrated radial-basis-function network (IRBFN) method is further developed to solve transient partial differential equations (PDEs) governing fluid flow problems. Spatial derivatives are discretized using one- and two-dimensional IRBFN interpolation schemes, whereas temporal derivatives are approximated using a method of lines and a finite-difference technique. In the case of moving interface problems, the IRBFN method is combined with the level set method to capture the evolution of the interface. The accuracy of the method is investigated by considering several benchmark test problems, including the classical lid-driven cavity flow. Very accurate results are achieved using relatively low numbers… More >