Home / Journals / CMES / Vol.79, No.3&4, 2011
Special lssues
Table of Content
  • Open AccessOpen Access

    ARTICLE

    Methodology for Numerical Simulation of Trabecular Bone Structures Mechanical Behavior

    M.A. Argenta1, A.P. Gebert2, E.S. Filho3, B.A. Felizari4, M.B. Hecke5
    CMES-Computer Modeling in Engineering & Sciences, Vol.79, No.3&4, pp. 159-182, 2011, DOI:10.3970/cmes.2011.079.159
    Abstract Various methods in the literature proposesequations to calculate the stiffness as a function of density of bone tissue such as apparent density and ash density among others[Helgason, Perilli, Schileo, Taddei, Brynjolfsson and Viceconti, 2008]. Other ones present a value of an equivalent elasticity modulus, obtained by statistical adjustments of curves generated through mechanical compression tests over various specimens[Chevalier, Pahr, Allmer, Charlebois and Zysset, 2007; Cuppone, Seedhom, Berry and Ostell, 2004]. Bone tissue is a material withdifferent behaviors according to the scale of observation. It has a complex composite hierarchical structure, which is responsible for assign optimal mechanical properties. Its characteristics,… More >

  • Open AccessOpen Access

    ARTICLE

    Particle-Packaging Methods for Computational Modeling of Bones

    I. Pérez1, R. Roselló1, C. Recarey1, M. Cerrolaza2
    CMES-Computer Modeling in Engineering & Sciences, Vol.79, No.3&4, pp. 183-200, 2011, DOI:10.3970/cmes.2011.079.183
    Abstract Modeling the geometry and behavior of human bones is of the most concern when dealing with bone remodelling (external and internal) and poroelastic analysis. Complex geometries are frequently found in the human skeleton as well as orthotropic behavior of bone tissue. Spongy bone has a completely different constitution as compared with compact bone, which adds another relevant consideration if we want to get reliable results in biomechanical analysis. The modeling of both compact and spongy human-bone tissue is carried out by using packaging-particle methods. The methods generate circles (2D domains) and spheres (3D domains) in a random manner for the… More >

  • Open AccessOpen Access

    ARTICLE

    Simulation of Sloshing Effect on Vessel Motions by Using MPS (Moving Particle Simulation)

    K.S. Kim1, B.H. Lee2, M.H. Kim1, J.C. Park3
    CMES-Computer Modeling in Engineering & Sciences, Vol.79, No.3&4, pp. 201-222, 2011, DOI:10.3970/cmes.2011.079.201
    Abstract The coupling and interactions between vessel motion and inner-tank sloshing are investigated by a potential-CFD (Computational Fluid Dynamics) hybrid method in time domain. Potential-theory-based 3D diffraction/radiation panel program is used to obtain the hydrodynamic coefficients and wave forces for the simulation of vessel motion in time domain. The liquid sloshing in tanks is simulated in time domain by using the improved Moving Particle Simulation (PNU-MPS) method and it is validated through comparison against sloshing experiments. The calculated sloshing tank forces and moments are applied to the vessel-motion simulation as excitation forces and moments. The updated ship motion, which is influenced… More >

  • Open AccessOpen Access

    ARTICLE

    A Numerical Technique Based on Integrated RBFs for the System Evolution in Molecular Dynamics

    N. Mai-Duy1, T. Tran-Cong1, N. Phan-Thien2
    CMES-Computer Modeling in Engineering & Sciences, Vol.79, No.3&4, pp. 223-236, 2011, DOI:10.3970/cmes.2011.079.223
    Abstract This paper presents a new numerical technique for solving the evolution equations in molecular dynamics (MD). The variation of the MD system is represented by radial-basis-function (RBF) equations which are constructed using integrated multiquadric basis functions and point collocation. The proposed technique requires the evaluation of forces once per time step. Several examples are given to demonstrate the attractiveness of the present implementation. More >

  • Open AccessOpen Access

    ARTICLE

    A Stabilized Finite Element Formulation for Continuum Models of Traffic Flow

    Durgesh Vikram1, Sanjay Mittal2, Partha Chakroborty1
    CMES-Computer Modeling in Engineering & Sciences, Vol.79, No.3&4, pp. 237-260, 2011, DOI:10.3970/cmes.2011.079.237
    Abstract A stabilized finite element formulation is presented to solve the governing equations for traffic flow. The flow is assumed to be one-dimensional. Both, PW-type (Payne-Whitham) 2-equation models and the LWR-type (Lighthill-Whitham-Richards) 1-equation models are considered. The SUPG (Streamline-Upwind/Petrov-Galerkin) and shock capturing stabilizations are utilized. These stabilizations are sufficient for the 1-equation models. However, an additional stabilization is necessary for the 2-equation models. For the first time, such a stabilization is proposed. It arises from the coupling between the two equations and is termed as IEPG (Inter-Equation/Petrov-Galerkin) stabilization. Two behavioral models are studied: Greenshields' (GS) and Greenberg's (GB) models. Numerical tests… More >

  • Open AccessOpen Access

    ARTICLE

    Unit Setting Method to Impose EBCs in Meshless Methods

    W.L. Yang1, Y.F. Nie2, Y.T. Wu1
    CMES-Computer Modeling in Engineering & Sciences, Vol.79, No.3&4, pp. 261-270, 2011, DOI:10.3970/cmes.2011.079.261
    Abstract Up to now, some methods have been proposed to impose essential boundary conditions (EBCs) in meshless methods to solve partial differential equations system. Based on the theory analysis about moving least square (MLS) approximation and numerical experimentation results, a very simple method to impose EBCs in element-free Galerkin methods, which is the same easy as in finite element methods, is posed here. Compared with Lagrange multiplier method, the new method is simple and gives better results at the distributed nodes. The new method dues to a view point, different from normal understanding, that taking generalized parameters in MLS approximations as… More >

Per Page:

Share Link