Home / Journals / CMES / Vol.23, No.2, 2008
Special lssues
Table of Content
  • Open AccessOpen Access

    ARTICLE

    A New Meshless Interpolation Scheme for MLPG_R Method

    Q.W. Ma1
    CMES-Computer Modeling in Engineering & Sciences, Vol.23, No.2, pp. 75-90, 2008, DOI:10.3970/cmes.2008.023.075
    Abstract In the MLPG_R (Meshless Local Petrove-Galerkin based on Rankine source solution) method, one needs a meshless interpolation scheme for an unknown function to discretise the governing equation. The MLS (moving least square) method has been used for this purpose so far. The MLS method requires inverse of matrix or solution of a linear algebraic system and so is quite time-consuming. In this paper, a new scheme, called simplified finite difference interpolation (SFDI), is devised. This scheme is generally as accurate as the MLS method but does not need matrix inverse and consume less CPU time to evaluate. Although this scheme… More >

  • Open AccessOpen Access

    ARTICLE

    The Stochastic α Method: A Numerical Method for Simulation of Noisy Second Order Dynamical Systems

    Nagalinga Rajan, Soumyendu Raha1
    CMES-Computer Modeling in Engineering & Sciences, Vol.23, No.2, pp. 91-116, 2008, DOI:10.3970/cmes.2008.023.091
    Abstract The article describes a numerical method for time domain integration of noisy dynamical systems originating from engineering applications. The models are second order stochastic differential equations (SDE). The stochastic process forcing the dynamics is treated mainly as multiplicative noise involving a Wiener Process in the Itô sense. The developed numerical integration method is a drift implicit strong order 2.0 method. The method has user-selectable numerical dissipation properties that can be useful in dealing with both multiplicative noise and stiffness in a computationally efficient way. A generalized analysis of the method including the multiplicative noise is presented. Strong order convergence, user-selectable… More >

  • Open AccessOpen Access

    ARTICLE

    Property Predictions for Packed Columns Using Monte Carlo and Discrete Element Digital Packing Algorithms

    C. Xu1, X. Jia2, R. A. Williams2, E. H. Stitt3, M. Nijemeisland3, S. El-Bachir4, A. J. Sederman4, L. F. Gladden4
    CMES-Computer Modeling in Engineering & Sciences, Vol.23, No.2, pp. 117-126, 2008, DOI:10.3970/cmes.2008.023.117
    Abstract Existing theories and computer models for packed columns are either incapable of handling complex pellet shapes or based on over-simplified packing geometry. A digital packing algorithm, namely DigiPac, has recently been developed to fill the gap. It is capable of packing of particles of any shapes and sizes in a container of arbitrary geometry, and is a first step towards a practical computational tool for reliable predictions of packed column properties based on the actual pellet shapes. DigiPac can operate in two modes: a Monte Carlo mode in which particles undergo directional diffusive motions; and a Discrete Element mode where… More >

  • Open AccessOpen Access

    ARTICLE

    A Hybrid Multi-Region BEM / LBIE-RBF Velocity-Vorticity Scheme for the Two-Dimensional Navier-Stokes Equations

    E.J. Sellountos1, A. Sequeira1
    CMES-Computer Modeling in Engineering & Sciences, Vol.23, No.2, pp. 127-148, 2008, DOI:10.3970/cmes.2008.023.127
    Abstract In this work a hybrid velocity-vorticity scheme for the solution of the 2D Navier-Stokes equations is presented. The multi-region Local Boundary Integral Equation (LBIE) combined with Radial Basis Functions (RBF) interpolation is used for the solution of the kinematics and the multi-region BEM for the solution of the transport kinetics. The final system of equations is in band form for both methods. The issue of RBF discontinuities is resolved by constructing the RBF matrix locally in every region. The kinematics integral equation is used in three different forms, for coupling the velocity field on the boundary, on interior points and… More >

Per Page:

Share Link