Special Issue "Numerical Modeling and Simulation for Structural Safety and Disaster Mitigation"

Submission Deadline: 30 November 2019 (closed)
Guest Editors
Professor Xiaodan Ren, Tongji University, China
Dr. Tiancan Huang, Guangzhou University, China


Natural disasters including earthquake, hurricane, tsunami, flood and wildfire, cause enormous loss of lives and properties for human society every year. The structures and infra-structures are built to protect the mankind from natural disasters, but their damage and failure sometimes become part of the disasters. Therefore, the structural safety and disaster mitigation have become timely research topics for safeguarding our society. On the other hand, with the rapid developments of computer facilities and computational methods, modern researchers and engineers are well equipped. With the help of numerical modelling and simulation tools, the structures could be analyzed with the consideration of more realistic situations and designed in more reliable approaches. Furthermore, more and more innovative numerical methods are developed to meet the demands of better investigation and understanding for the nonlinear behaviors of structures subjected to the attacks of disasters. Those who have been working on in the related fields are cordially invited to submit their works to this special issue.

Potential topics include but are not limited to: 

1. Numerical modeling methods for structures
2. Advanced simulation methods for structural failure
3. Constitutive modeling of material damage and failure
4. Simulation of complex structural behaviors subjected to attacks of disaster events
5. Multiscale disaster simulation
6. Multi-hazard simulation
7. Numerical algorithm implementation and simulation software development
8. Structural reliability analysis and simulation
9. Data-driven modeling for structural behaviors
10. AI-based methods for disaster mitigation

Numerical methods; structural safety; disaster mitigation; failure simulation; damage modeling; dynamic behavior; multi-scale methods

Published Papers

  • Improving the Seismic Performance of Staircases in Building Structures with a Novel Isolator
  • Abstract A staircase provides the main escape way from a building in an emergency. Unfortunately, it may suffer severe damages or even collapse during an earthquake. For improving the seismic performance of staircases, this paper proposes an innovative staircase isolator with the features of lightweight, costeffective and ease of construction and replacement, which is formed by suitable engineering plastic shims between rubber layers. A connection construction scheme is also proposed for the isolated staircase. Systematic performance tests have been carried out to characterize the isolator in terms of mechanic behavior and ultimate states. The test results show that mechanical properties of… More
  •   Views:1887       Downloads:1975       Cited by:1        Download PDF

  • Scour Effect on Dynamic Characteristics and Responses of Offshore Wind Turbines
  • Abstract The monopile foundation is the main form of offshore wind turbine foundation, and its surrounding scouring pit will reduce the constraints of the soil on the piles, which makes wind turbine foundation instability a key issue affecting the structural safety of offshore wind turbines. In previous studies, the rotating rotor and control system are neglected when studying the influence of scour on the offshore wind turbine structure. In this paper, the numerical model of the blade-tower-monopile integrated offshore wind turbine is established, and the influence of scour on the dynamic characteristics of wind turbine is obtained considering parameters, such as… More
  •   Views:1800       Downloads:1859       Cited by:1        Download PDF

  • Comparative Investigation of Two Random Medium Models for Concrete Mesostructure
  • Abstract Concrete is intrinsically endowed with randomness on meso-scale due to the random distribution of aggregates, mortar, etc. In this paper, two random medium models of concrete mesostructure are developed and comparative studies are provided based on random field representation approach. In the first place, concrete is considered as a kind of one-phase random field, where stochastic harmonic function is adopted as the approach to simulate the random field. Secondly, in order to represent the stochastic distribution of the multi-phase of concrete such as aggregates and mortar, two-phase random field based on the Nataf transformation and the Hermite polynomials are introduced.… More
  •   Views:2021       Downloads:1543        Download PDF

  • Safety Performance of a Precast Concrete Barrier: Numerical Study
  • Abstract The numerical simulation for a new type of precast concrete barrier for viaducts is carried out systematically. To obtain an accurate representation of the damage state of the concrete barrier under the impact of a vehicle, a stochastic damage-plasticity model of the concrete is adopted in the finite element model. Meanwhile, a simplified mathematical model of the impact between vehicles and the concrete barrier was established and the input energy was converted to the impact load to facilitate the investigation of the safety performance of the concrete barriers. On this basis, a refined finite element (FE) model of a precast… More
  •   Views:2324       Downloads:1937       Cited by:1        Download PDF

  • Identification of the Discrete Element Model Parameters for Rock-Like Brittle Materials
  • Abstract An inverse method for parameters identification of discrete element model combined with experiment is proposed. The inverse problem of parameter identification is transmitted to solve an optimization problem by minimizing the distance between the numerical calculations and experiment responses. In this method, the discrete element method is employed as numerical calculator for the forward problem. Then, the orthogonal experiment design with range analysis was used to carry out parameters sensitivity analysis. In addition, to improve the computational efficiency, the approximate model technique is used to replace the actual computational model. The intergeneration projection genetic algorithm (IP-GA) is employed as the… More
  •   Views:2397       Downloads:1670       Cited by:1        Download PDF

  • Seismic Analysis of the Connections of Buried Segmented Pipes
  • Abstract Seismic analysis of buried pipes has been one study focus during the last decades, but the systematic seismic research of pipe connections, especially its relationship with the connected straight pipe, is nearly blank. On the basis, the influence of pipe connections on the joint deformations (JDs) of buried segmented pipes is analyzed in detail by considering different parameters, namely, connection shapes, ground conditions, pipe diameters, branch angles, seismic incident angles, and input ground motions. Moreover, an influence coefficient, which measures the influence of pipe connections on pipe JDs, is calculated. Results show that pipe connections can reduce the JDs of… More
  •   Views:2290       Downloads:1812       Cited by:1        Download PDF

  • Experimental and Numerical Investigation on the Tensile Fracture of Compacted Clay
  • Abstract This paper performed flexural test and numerical simulation of clay-beams with different water contents to study the tensile fracture of clay soil and the relevant mechanisms. The crack initiation and propagation process and the accompanied strain localization behaviors were all clearly observed and analyzed. The exponential cohesive zone model was proposed to simulate the crack interface behavior of the cohesivefrictional materials. The experimental results show that the bending capacity of claybeams decrease with the water content, while those of the crack mouth opening displacement, crack-tip strain and the strain localization range increase. The numerical predictions successfully reproduce the evolving tensile… More
  •   Views:2639       Downloads:1731       Cited by:2        Download PDF

  • Analysis of Naval Ship Evacuation Using Stochastic Simulation Models and Experimental Data Sets
  • Abstract The study of emergency evacuation in public spaces, buildings and large ships may present parallel characteristic in terms of complexity of the layout but there are also significant differences that can hindering passengers to reach muster stations or the lifeboats. There are many hazards on a ship that can cause an emergency evacuation, the most severe result in loss of lives. Providing safe and effective evacuation of passengers from ships in an emergency situation becomes critical. Recently, computer simulation has become an indispensable technology in various fields, among them, the evacuation models that recently evolved incorporating human behavioral factors. In… More
  •   Views:2138       Downloads:2455       Cited by:2        Download PDF

  • Multi-Scale Damage Model for Quasi-Brittle Composite Materials
  • Abstract In the present paper, a hierarchical multi-scale method is developed for the nonlinear analysis of composite materials undergoing heterogeneity and damage. Starting from the homogenization theory, the energy equivalence between scales is developed. Then accompanied with the energy based damage model, the multi-scale damage evolutions are resolved by homogenizing the energy scalar over the meso-cell. The macroscopic behaviors described by the multi-scale damage evolutions represent the mesoscopic heterogeneity and damage of the composites. A rather simple structure made from particle reinforced composite materials is developed as a numerical example. The agreement between the fullscale simulating results and the multi-scale simulating… More
  •   Views:2492       Downloads:1745        Download PDF

  • An Equivalent Strain Based Multi-Scale Damage Model of Concrete
  • Abstract A multi-scale damage model of concrete is proposed based on the concept of energy equivalent strain for generic two- or three-dimensional applications. Continuum damage mechanics serves as the framework to describe the basic damage variables, namely the tensile and compressive damage. The homogenized Helmholtz free energy is introduced as the bridge to link the micro-cell and macroscopic material. The crack propagation in micro-cells is modeled, and the Helmholtz free energy in the cracked micro-structure is calculated and employed to extract the damage evolution functions in the macroscopic material. Based on the damage energy release rates and damage consistent condition, the… More
  •   Views:2507       Downloads:1668       Cited by:1        Download PDF