FDMP-Fluid Dynamics & Materials Processing

About the Journal

The Journal is intended to cover some "frontier" aspects of materials science and, in particular, the most modern and advanced processes for the production of inorganic (semiconductors and metal alloys), organic (protein crystals) materials and "living" (in vitro) biological tissues, with emphasis on the fluid-dynamic conditions under which they are operated. The Journal focuses on the final properties of these materials as well as on fluid-mechanical aspects pertaining to the technological processes used to grow them. Some attention is devoted as well to all those problems of “structure/fluid” interaction that have extensive background applications in important fields such as marine, aeronautical and aerospace engineering.

Indexing and Abstracting

Emerging Source Citation Index (Web of Science) (ESCI 2016); Scopus Citescore (Impact per Publication 2020): 1.4; SNIP (Source Normalized Impact per Paper 2020): 1.163; Engineering Index (Compendex); Thomson Reuters (Clarivate Analytics) Master Journal List; Web of Science Core Collection; Applied Mechanics Reviews; Cambridge Scientific Abstracts: Aerospace and High Technology, Materials Sciences & Engineering, and Computer & Information Systems Abstracts Database; INSPEC Databases; Mechanics; Science Navigator; Zentralblatt fur Mathematik; Portico, etc...

  • Models for Predicting the Jet Trajectory and Intensity Drop Point of Fire Monitors
  • Abstract Two models are defined for predicting the trajectory of a foam jet originating from a fire monitor (hydrant) and the related intensity drop point. An experimental framework is also defined and used accordingly to compare real-time data with the predictions of such models. This mixed theoretical-experimental approach is proven to be effective for the determination of otherwise unknown coefficients which take into account several important factors such as the operation pressure, the elevation angle and the nozzle diameter. It is shown that the mean absolute error is smaller than 20%. More
  •   Views:179       Downloads:175        Download PDF
  • Effects of Particle Concentration on the Dynamics of a Single-Channel Sewage Pump under Low-Flow-Rate Conditions
  • Abstract Single-channel sewage pumps are generally used to transport solid-liquid two-phase media consisting of a fluid and solid particles due to the good non-clogging property of such devices. However, the non-axisymmetric structure of the impeller of this type of pumps generally induces flow asymmetry, oscillatory outflow during operations, and hydraulic imbalance. In severe cases, these effects can jeopardize the safety and stability of the overall pump. In the present study, such a problem is investigated in the framework of a Mixture multiphase flow method coupled with a RNG turbulence model used to determine the structure of the flow field and the… More
  •   Views:126       Downloads:97        Download PDF
  • Analysis of the Thermal Behavior of a Lithium Cell Undergoing Thermal Runaway
  • Abstract This study examines the thermal runaway of a lithium ion battery caused by poor heat dissipation performances. The heat transfer process is analyzed on the basis of standard theoretical concepts. Water mist additives are considered as a tool to suppress the thermal runaway process. The ensuing behaviour of the battery in terms of surface temperature and heat generation is analyzed for different charge and discharge rates. It is found that when the remaining charge is 100%, the heat generation rate of the battery is the lowest, and the surface temperature with a 2C charge rate is higher than that obtained… More
  •   Views:171       Downloads:152        Download PDF
  • On Aircraft Lift and Drag Reduction Using V Shaped Riblets
  • Abstract Reducing drag during take-off and nominal (cruise) conditions is a problem of fundamental importance in aeronautical engineering. Existing studies have demonstrated that v-shaped symmetrical riblets can effectively be used for turbulence control, with those with dimensionless depth h+ = 15 and dimensionless width s+ = 15 having the best drag reduction effect. In the present study, experimental tests have been conducted considering two models of the same size, one with smooth surface, the other with v-shaped riblets of the h+ = 15 and s+ = 15 type. The results show that for an angle of attack in the 8°~20° range… More
  •   Views:94       Downloads:87        Download PDF
  • A study on the Gas-based Lubrication of Elastic Foil Bearings Using an Over Relaxation Iteration Method
  • Abstract A new type of foil bearings with a specific surface microstructure is studied. First, relevant boundary conditions based on the assumption of rarefied gas flow are proposed, then, the static bearing capacity and friction torque are analyzed in the framework of a numerical technique based on the discretization of the governing equation for rarefied gas-dynamics. It is shown that under the same static load, the difference between the minimum film thickness calculated in this exploration and the results provided by dedicated tests is not obvious; with an increase in the load, the simulation results are closer to the test values;… More
  •   Views:102       Downloads:80        Download PDF
  • Visualization of Water Plugging Displacement with Foam/Gel Flooding in Internally Heterogeneous Reservoirs
  • Abstract During the displacement of water plugging with binary flooding in internally heterogeneous reservoirs, it is essential to understand the distributions of remaining oil as well as the oil displacement mechanisms at different stages. In this study, two types of internally heterogeneous systems, i.e., vertical and horizontal wells are investigated experimentally through a microscopic approach. The results show that plugging agent types have a greater impact on oil recovery than well types, and foam injection can enhance oil recovery more effectively than gel injection. Additionally, the injection sequence of plugging agents significantly affects oil displacement efficiency. Injecting gel after foam is… More
  •   Views:91       Downloads:80        Download PDF
  • Experimental and Numerical Analysis of High-Strength Concrete Beams Including Steel Fibers and Large-Particle Recycled Coarse Aggregates
  • Abstract In order to study the performances of high-strength concrete beams including steel fibers and large-particle recycled aggregates, four different beams have been designed, tested experimentally and simulated numerically. As varying parameters, the replacement rates of recycled coarse aggregates and CFRP (carbon fiber reinforced polymer) sheets have been considered. The failure mode of these beams, related load deflection curves, stirrup strain and shear capacity have been determined through monotonic loading tests. The simulations have been conducted using the ABAQUS finite element software. The results show that the shear failure mode of recycled concrete beams is similar to that of ordinary concrete… More
  •   Views:161       Downloads:156        Download PDF
  • Influence of Electrical Field Distortions Induced by Water Droplets on the Contamination Characteristics of an Insulator
  • Abstract When separated water droplets condense on the surface of a composite insulator, the electrical field on the insulator surface is distorted. In turn, such distortions change the trajectories of pollution particles. In this study, the COMSOL software is used to simulate such a process for the FXBW4-10/100 composite insulator with or without water droplets condensation under a 10 kV DC voltage. The influence of the wind speed and particles concentration on the contamination characteristics of the considered 110 kV insulator is analyzed. The results show that: 1) in the presence of water droplets on the insulator surface, the ratio of… More
  •   Views:168       Downloads:158        Download PDF
  • Investigation on the Changing Characteristics of Flow-Induced Noise in a Centrifugal Pump
  • Abstract Centrifugal pumps are widely used in engineering for a variety of applications. A known drawback of these devices is the high-level noise generated during operations, which can affect their stability and adversely influence the entire working environment. By combining the Powell vortex sound theory, numerical simulations and experimental measurements, this research explores the trends of variation and the corresponding underlying mechanisms for the flow-induced noise at various locations and under different operating conditions. It is shown that the total sound source intensity (TSSI) and total sound pressure level (TSPL) in the impeller, in the region between the inlet to the… More
  •   Views:174       Downloads:168        Download PDF