Home / Journals / CMC / Vol.37, No.3, 2013
Table of Content
  • Open Access

    ARTICLE

    Soft Computing for Terahertz Metamaterial Absorber Design for Biomedical Application

    Balamati Choudhury1, Pavani Vijay Reddy1, Sanjana Bisoyi1, R. M. Jha1
    CMC-Computers, Materials & Continua, Vol.37, No.3, pp. 135-146, 2013, DOI:10.3970/cmc.2013.037.135
    Abstract The terahertz region of the electromagnetic spectrum plays a vital role in biomedical imaging because of its sensitivity to vibrational modes of biomolecules. Advances in broadband terahertz imaging have been emerging in the field of biomedical spectroscopy. Biomedical imaging is used to distinguish between the infected (cancer) and the non-infected tissue, which requires broad band and highly efficient radar absorbing material (RAM) designs (to obtain high resolution image of the tissue). In this paper, a metamaterial broadband RAM design is proposed towards biomedical spectroscopy applications in the THz region. The particle swarm optimization (PSO) algorithm is used for the design… More >

  • Open Access

    ARTICLE

    Taguching the Atmospheric Plasma Spraying Process: Influence of Processing Factors on Droplet Impact Properties Obtained on Dense ZrO2 and H2Ar75% Plasma Gas

    Ridha Djebali1, Mohsen Toujani2, Bernard Pateyron3
    CMC-Computers, Materials & Continua, Vol.37, No.3, pp. 147-160, 2013, DOI:10.3970/cmc.2013.037.147
    Abstract In this paper a study of the atmospheric plasma spraying process was conducted. The Jets&Poudres code was used to solve the partial differential equations for the conservation of mass, momentum and energy involved in the problem together with the K-e turbulent model. The Taguchi technique was used to study the influence of processing factors on droplet impact properties obtained on dense zirconia (ZrO2) under H2Ar75% plasma gas that allow optimal functioning condition. The test of the operating parameters for the studied ranges showed that the "thermal power" factor plays a key role on the state of sprayed powder. It was… More >

  • Open Access

    ARTICLE

    From Ordered to Disordered: The Effect of Microstructure on Composite Mechanical Performance

    L.B. Borkowski1, K.C. Liu1, A. Chattopadhyay1
    CMC-Computers, Materials & Continua, Vol.37, No.3, pp. 161-193, 2013, DOI:10.3970/cmc.2013.037.161
    Abstract The microstructural variation in fiber-reinforced composites has a direct relationship with its local and global mechanical performance. When micromechanical modeling techniques for unidirectional composites assume a uniform and periodic arrangement of fibers, the bounds and validity of this assumption must be quantified. The goal of this research is to quantify the influence of microstructural randomness on effective homogeneous response and local inelastic behavior. The results indicate that microstructural progression from ordered to disordered decreases the tensile modulus by 5%, increases the shear modulus by 10%, and substantially increases the magnitude of local inelastic fields. The experimental and numerical analyses presented… More >

  • Open Access

    ARTICLE

    Effects of High Magnetic Field on the Structure and Magnetic Properties of Molecular Beam Vapor Deposited Fe60Ni40 Thin Films

    Yongze Cao1, Guojian Li1, Qiang Wang1,2, Xiaoguang Wang3, Jiaojiao Du1, Jicheng He1
    CMC-Computers, Materials & Continua, Vol.37, No.3, pp. 195-203, 2013, DOI:10.3970/cmc.2013.037.195
    Abstract The Fe60Ni40 (in atomic %) polycrystalline thin films with 90 nm thickness were prepared on 200 °C quartz substrate by using molecular beam vapor deposition method. The influence of 0 T and 6 T magnetic fields on the structural evolution and magnetic properties of thin films was studied by using EDXS, XRD, AFM and VSM. In this study, only α phase was formed in both thin films. It was found that the application of a 6 T magnetic field obviously decreases the RMS of surface roughness and the grain size. For the magnetic properties of the thin films, the 6… More >

Share Link

WeChat scan