Wind Power Prediction Based on Machine Learning and Deep Learning Models
Zahraa Tarek1, Mahmoud Y. Shams2,*, Ahmed M. Elshewey3, El-Sayed M. El-kenawy4,5, Abdelhameed Ibrahim6, Abdelaziz A. Abdelhamid7,8, Mohamed A. El-dosuky1,9
CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 715-732, 2023, DOI:10.32604/cmc.2023.032533
Abstract Wind power is one of the sustainable ways to generate renewable energy. In recent years, some countries have set renewables to meet future energy needs, with the primary goal of reducing emissions and promoting sustainable growth, primarily the use of wind and solar power. To achieve the prediction of wind power generation, several deep and machine learning models are constructed in this article as base models. These regression models are Deep neural network (DNN), k-nearest neighbor (KNN) regressor, long short-term memory (LSTM), averaging model, random forest (RF) regressor, bagging regressor, and gradient boosting (GB) regressor.… More >