Vol.71, No.2, 2022-Table of Contents
  • Hybrid Renewable Energy Resources Management for Optimal Energy Operation in Nano-Grid
  • Abstract Renewable energy resources are deemed a potential energy production source due to their cost efficiency and harmless reaction to the environment, unlike non-renewable energy resources. However, they often fail to meet energy requirements in unfavorable weather conditions. The concept of Hybrid renewable energy resources addresses this issue by integrating both renewable and non-renewable energy resources to meet the required energy load. In this paper, an intelligent cost optimization algorithm is proposed to maximize the use of renewable energy resources and minimum utilization of non-renewable energy resources to meet the energy requirement for a nanogrid infrastructure. An actual data set comprising… More
  •   Views:738       Downloads:669        Download PDF
  • HELP-WSN-A Novel Adaptive Multi-Tier Hybrid Intelligent Framework for QoS Aware WSN-IoT Networks
  • Abstract Wireless Sensor Network is considered as the intermediate layer in the paradigm of Internet of things (IoT) and its effectiveness depends on the mode of deployment without sacrificing the performance and energy efficiency. WSN provides ubiquitous access to location, the status of different entities of the environment and data acquisition for long term IoT monitoring. Achieving the high performance of the WSN-IoT network remains to be a real challenge since the deployment of these networks in the large area consumes more power which in turn degrades the performance of the networks. So, developing the robust and QoS (quality of services)… More
  •   Views:490       Downloads:378        Download PDF
  • Plant Disease Diagnosis and Image Classification Using Deep Learning
  • Abstract Indian agriculture is striving to achieve sustainable intensification, the system aiming to increase agricultural yield per unit area without harming natural resources and the ecosystem. Modern farming employs technology to improve productivity. Early and accurate analysis and diagnosis of plant disease is very helpful in reducing plant diseases and improving plant health and food crop productivity. Plant disease experts are not available in remote areas thus there is a requirement of automatic low-cost, approachable and reliable solutions to identify the plant diseases without the laboratory inspection and expert's opinion. Deep learning-based computer vision techniques like Convolutional Neural Network (CNN) and… More
  •   Views:494       Downloads:451        Download PDF
  • Structure Preserving Algorithm for Fractional Order Mathematical Model of COVID-19
  • Abstract In this article, a brief biological structure and some basic properties of COVID-19 are described. A classical integer order model is modified and converted into a fractional order model with as order of the fractional derivative. Moreover, a valued structure preserving the numerical design, coined as Grunwald–Letnikov non-standard finite difference scheme, is developed for the fractional COVID-19 model. Taking into account the importance of the positivity and boundedness of the state variables, some productive results have been proved to ensure these essential features. Stability of the model at a corona free and a corona existing equilibrium points is investigated on… More
  •   Views:363       Downloads:328        Download PDF
  • Cost Estimate and Input Energy of Floor Systems in Low Seismic Regions
  • Abstract Reinforced concrete (RC) as a material is most commonly used for buildings construction. Several floor systems are available following the structural and architectural requirements. The current research study provides cost and input energy comparisons of RC office buildings of different floor systems. Conventional solid, ribbed, flat plate and flat slab systems are considered in the study. Building models in three-dimensional using extended three-dimensional analysis of building systems (ETABS) and in two-dimensional using slab analysis by the finite element (SAFE) are developed for analysis purposes. Analysis and design using both software packages and manual calculations are employed to obtain the optimum… More
  •   Views:297       Downloads:304        Download PDF
  • Numerical Analysis of Laterally Loaded Long Piles in Cohesionless Soil
  • Abstract The capability of piles to withstand horizontal loads is a major design issue. The current research work aims to investigate numerically the responses of laterally loaded piles at working load employing the concept of a beam-on-Winkler-foundation model. The governing differential equation for a laterally loaded pile on elastic subgrade is derived. Based on Legendre-Galerkin method and Runge-Kutta formulas of order four and five, the flexural equation of long piles embedded in homogeneous sandy soils with modulus of subgrade reaction linearly variable with depth is solved for both free- and fixed-headed piles. Mathematica, as one of the world's leading computational software,… More
  •   Views:396       Downloads:327        Download PDF
  • Noisy ECG Signal Data Transformation to Augment Classification Accuracy
  • Abstract In this era of electronic health, healthcare data is very important because it contains information about human survival. In addition, the Internet of Things (IoT) revolution has redefined modern healthcare systems and management by providing continuous monitoring. In this case, the data related to the heart is more important and requires proper analysis. For the analysis of heart data, Electrocardiogram (ECG) is used. In this work, machine learning techniques, such as adaptive boosting (AdaBoost) is used for detecting normal sinus rhythm, atrial fibrillation (AF), and noise in ECG signals to improve the classification accuracy. The proposed model uses ECG signals… More
  •   Views:327       Downloads:318        Download PDF
  • Deep Image Restoration Model: A Defense Method Against Adversarial Attacks
  • Abstract These days, deep learning and computer vision are much-growing fields in this modern world of information technology. Deep learning algorithms and computer vision have achieved great success in different applications like image classification, speech recognition, self-driving vehicles, disease diagnostics, and many more. Despite success in various applications, it is found that these learning algorithms face severe threats due to adversarial attacks. Adversarial examples are inputs like images in the computer vision field, which are intentionally slightly changed or perturbed. These changes are humanly imperceptible. But are misclassified by a model with high probability and severely affects the performance or prediction.… More
  •   Views:410       Downloads:325        Download PDF
  • Deep Reinforcement Learning for Addressing Disruptions in Traffic Light Control
  • Abstract This paper investigates the use of multi-agent deep Q-network (MADQN) to address the curse of dimensionality issue occurred in the traditional multi-agent reinforcement learning (MARL) approach. The proposed MADQN is applied to traffic light controllers at multiple intersections with busy traffic and traffic disruptions, particularly rainfall. MADQN is based on deep Q-network (DQN), which is an integration of the traditional reinforcement learning (RL) and the newly emerging deep learning (DL) approaches. MADQN enables traffic light controllers to learn, exchange knowledge with neighboring agents, and select optimal joint actions in a collaborative manner. A case study based on a real traffic… More
  •   Views:342       Downloads:375        Download PDF
  • An Improved DeepNN with Feature Ranking for Covid-19 Detection
  • Abstract The outbreak of Covid-19 has taken the lives of many patients so far. The symptoms of COVID-19 include muscle pains, loss of taste and smell, coughs, fever, and sore throat, which can lead to severe cases of breathing difficulties, organ failure, and death. Thus, the early detection of the virus is very crucial. COVID-19 can be detected using clinical tests, making us need to know the most important symptoms/features that can enhance the decision process. In this work, we propose a modified multilayer perceptron (MLP) with feature selection (MLPFS) to predict the positive COVID-19 cases based on symptoms and features… More
  •   Views:318       Downloads:305        Download PDF
  • Inkjet Printed Metamaterial Loaded Antenna for WLAN/WiMAX Applications
  • Abstract In this paper, the design and performance analysis of an Inkjet-printed metamaterial loaded monopole antenna is presented for wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications. The proposed metamaterial structure consists of two layers, one is rectangular tuning fork-shaped antenna, and another layer is an inkjet-printed metamaterial superstate. The metamaterial layer is designed using four split-ring resonators (SRR) with an H-shaped inner structure to achieve negative-index metamaterial properties. The metamaterial structure is fabricated on low-cost photo paper substrate material using a conductive ink-based inkjet printing technique, which achieved dual negative refractive index bands of 2.25–4.25… More
  •   Views:273       Downloads:326        Download PDF
  • Optimizing Steering Angle Predictive Convolutional Neural Network for Autonomous Car
  • Abstract Deep learning techniques, particularly convolutional neural networks (CNNs), have exhibited remarkable performance in solving vision-related problems, especially in unpredictable, dynamic, and challenging environments. In autonomous vehicles, imitation-learning-based steering angle prediction is viable due to the visual imagery comprehension of CNNs. In this regard, globally, researchers are currently focusing on the architectural design and optimization of the hyperparameters of CNNs to achieve the best results. Literature has proven the superiority of metaheuristic algorithms over the manual-tuning of CNNs. However, to the best of our knowledge, these techniques are yet to be applied to address the problem of imitation-learning-based steering angle prediction.… More
  •   Views:406       Downloads:281        Download PDF
  • Forecasting of Appliances House in a Low-Energy Depend on Grey Wolf Optimizer
  • Abstract This paper gives and analyses data-driven prediction models for the energy usage of appliances. Data utilized include readings of temperature and humidity sensors from a wireless network. The building envelope is meant to minimize energy demand or the energy required to power the house independent of the appliance and mechanical system efficiency. Approximating a mapping function between the input variables and the continuous output variable is the work of regression. The paper discusses the forecasting framework FOPF (Feature Optimization Prediction Framework), which includes feature selection optimization: by removing non-predictive parameters to choose the best-selected feature hybrid optimization technique has been… More
  •   Views:290       Downloads:320        Download PDF
  • ICMPTend: Internet Control Message Protocol Covert Tunnel Attack Intent Detector
  • Abstract The Internet Control Message Protocol (ICMP) covert tunnel refers to a network attack that encapsulates malicious data in the data part of the ICMP protocol for transmission. Its concealment is stronger and it is not easy to be discovered. Most detection methods are detecting the existence of channels instead of clarifying specific attack intentions. In this paper, we propose an ICMP covert tunnel attack intent detection framework ICMPTend, which includes five steps: data collection, feature dictionary construction, data preprocessing, model construction, and attack intent prediction. ICMPTend can detect a variety of attack intentions, such as shell attacks, sensitive directory access,… More
  •   Views:284       Downloads:290        Download PDF
  • Exploring the Approaches to Data Flow Computing
  • Abstract Architectures based on the data flow computing model provide an alternative to the conventional Von-Neumann architecture that are widely used for general purpose computing. Processors based on the data flow architecture employ fine-grain data-driven parallelism. These architectures have the potential to exploit the inherent parallelism in compute intensive applications like signal processing, image and video processing and so on and can thus achieve faster throughputs and higher power efficiency. In this paper, several data flow computing architectures are explored, and their main architectural features are studied. Furthermore, a classification of the processors is presented based on whether they employ either… More
  •   Views:299       Downloads:279        Download PDF
  • Big Data Analytics Using Swarm-Based Long Short-Term Memory for Temperature Forecasting
  • Abstract In the past few decades, climatic changes led by environmental pollution, the emittance of greenhouse gases, and the emergence of brown energy utilization have led to global warming. Global warming increases the Earth's temperature, thereby causing severe effects on human and environmental conditions and threatening the livelihoods of millions of people. Global warming issues are the increase in global temperatures that lead to heat strokes and high-temperature-related diseases during the summer, causing the untimely death of thousands of people. To forecast weather conditions, researchers have utilized machine learning algorithms, such as autoregressive integrated moving average, ensemble learning, and long short-term… More
  •   Views:298       Downloads:284        Download PDF
  • CDLSTM: A Novel Model for Climate Change Forecasting
  • Abstract Water received in rainfall is a crucial natural resource for agriculture, the hydrological cycle, and municipal purposes. The changing rainfall pattern is an essential aspect of assessing the impact of climate change on water resources planning and management. Climate change affected the entire world, specifically India’s fragile Himalayan mountain region, which has high significance due to being a climatic indicator. The water coming from Himalayan rivers is essential for 1.4 billion people living downstream. Earlier studies either modeled temperature or rainfall for the Himalayan area; however, the combined influence of both in a long-term analysis was not performed utilizing Deep… More
  •   Views:410       Downloads:353        Download PDF
  • Metamaterial-Based Compact Antenna with Defected Ground Structure for 5G and Beyond
  • Abstract In this paper, a unit cell of a single-negative metamaterial structure loaded with a meander line and defected ground structure (DGS) is investigated as the principle radiating element of an antenna. The unit cell antenna causes even or odd mode resonances similar to the unit cell structure depending on the orientation of the microstrip feed used to excite the unit cell. However, the orientation which gives low-frequency resonance is considered here. The unit cell antenna is then loaded with a meander line which is parallel to the split bearing side and connects the other two sides orthogonal to the split… More
  •   Views:292       Downloads:294        Download PDF
  • PLC Protection System Based on Verification Separation
  • Abstract Supervisory control and data acquisition systems (SCADAs) play an important role in supervising and controlling industrial production with the help of programmable logic controllers (PLCs) in industrial control systems (ICSs). A PLC receives the control information or program from a SCADA to control the production equipment and feeds the production data back to the SCADA. Once a SCADA is controlled by an attacker, it may threaten the safety of industrial production. The lack of security protection, such as identity authentication and encryption for industrial control protocols, increases the potential security risks. In this paper, we propose a PLC protection system… More
  •   Views:279       Downloads:350        Download PDF
  • Ensemble Learning Based Collaborative Filtering with Instance Selection and Enhanced Clustering
  • Abstract Recommender system is a tool to suggest items to the users from the extensive history of the user's feedback. Though, it is an emerging research area concerning academics and industries, where it suffers from sparsity, scalability, and cold start problems. This paper addresses sparsity, and scalability problems of model-based collaborative recommender system based on ensemble learning approach and enhanced clustering algorithm for movie recommendations. In this paper, an effective movie recommendation system is proposed by Classification and Regression Tree (CART) algorithm, enhanced Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) algorithm and truncation method. In this research paper, a new… More
  •   Views:289       Downloads:274        Download PDF
  • Feature Selection for Cluster Analysis in Spectroscopy
  • Abstract Cluster analysis in spectroscopy presents some unique challenges due to the specific data characteristics in spectroscopy, namely, high dimensionality and small sample size. In order to improve cluster analysis outcomes, feature selection can be used to remove redundant or irrelevant features and reduce the dimensionality. However, for cluster analysis, this must be done in an unsupervised manner without the benefit of data labels. This paper presents a novel feature selection approach for cluster analysis, utilizing clusterability metrics to remove features that least contribute to a dataset's tendency to cluster. Two versions are presented and evaluated: The Hopkins clusterability filter which… More
  •   Views:355       Downloads:261        Download PDF
  • Curvelet Transform Based on Edge Preserving Filter for Retinal Blood Vessel Segmentation
  • Abstract Segmentation of vessel in retinal fundus images is a primary step for the clinical identification for specific eye diseases. Effective diagnosis of vascular pathologies from angiographic images is thus a vital aspect and generally depends on segmentation of vascular structure. Although various approaches for retinal vessel segmentation are extensively utilized, however, the responses are lower at vessel's edges. The curvelet transform signifies edges better than wavelets, and hence convenient for multiscale edge enhancement. The bilateral filter is a nonlinear filter that is capable of providing effective smoothing while preserving strong edges. Fast bilateral filter is an advanced version of bilateral… More
  •   Views:326       Downloads:298        Download PDF
  • Skin Lesion Segmentation and Classification Using Conventional and Deep Learning Based Framework
  • Abstract Background: In medical image analysis, the diagnosis of skin lesions remains a challenging task. Skin lesion is a common type of skin cancer that exists worldwide. Dermoscopy is one of the latest technologies used for the diagnosis of skin cancer. Challenges: Many computerized methods have been introduced in the literature to classify skin cancers. However, challenges remain such as imbalanced datasets, low contrast lesions, and the extraction of irrelevant or redundant features. Proposed Work: In this study, a new technique is proposed based on the conventional and deep learning framework. The proposed framework consists of two major tasks: lesion segmentation… More
  •   Views:320       Downloads:321        Download PDF
  • Smart-Fragile Authentication Scheme for Robust Detecting of Tampering Attacks on English Text
  • Abstract Content authentication, integrity verification, and tampering detection of digital content exchanged via the internet have been used to address a major concern in information and communication technology. In this paper, a text zero-watermarking approach known as Smart-Fragile Approach based on Soft Computing and Digital Watermarking (SFASCDW) is proposed for content authentication and tampering detection of English text. A first-level order of alphanumeric mechanism, based on hidden Markov model, is integrated with digital zero-watermarking techniques to improve the watermark robustness of the proposed approach. The researcher uses the first-level order and alphanumeric mechanism of Markov model as a soft computing technique… More
  •   Views:270       Downloads:283        Download PDF
  • Hyper Elliptic Curve Based Certificateless Signcryption Scheme for Secure IIoT Communications
  • Abstract Industrial internet of things (IIoT) is the usage of internet of things (IoT) devices and applications for the purpose of sensing, processing and communicating real-time events in the industrial system to reduce the unnecessary operational cost and enhance manufacturing and other industrial-related processes to attain more profits. However, such IoT based smart industries need internet connectivity and interoperability which makes them susceptible to numerous cyber-attacks due to the scarcity of computational resources of IoT devices and communication over insecure wireless channels. Therefore, this necessitates the design of an efficient security mechanism for IIoT environment. In this paper, we propose a… More
  •   Views:323       Downloads:285        Download PDF
  • Low Profile UHF Antenna Design for Low Earth-Observation CubeSats
  • Abstract This paper reveals a new design of UHF CubeSat antenna based on a modified Planar Inverted F Antenna (PIFA) for CubeSat communication. The design utilizes a CubeSat face as the ground plane. There is a gap of 5 mm beneath the radiating element that facilitates the design providing with space for solar panels. The prototype is fabricated using Aluminum metal sheet and measured. The antenna achieved resonance at 419 MHz. Response of the antenna has been investigated after placing a solar panel. Lossy properties of solar panels made the resonance shift about 20 MHz. This design addresses the frequency shifting… More
  •   Views:293       Downloads:279        Download PDF
  • Design of Automated Opinion Mining Model Using Optimized Fuzzy Neural Network
  • Abstract Sentiment analysis or Opinion Mining (OM) has gained significant interest among research communities and entrepreneurs in the recent years. Likewise, Machine Learning (ML) approaches is one of the interesting research domains that are highly helpful and are increasingly applied in several business domains. In this background, the current research paper focuses on the design of automated opinion mining model using Deer Hunting Optimization Algorithm (DHOA) with Fuzzy Neural Network (FNN) abbreviated as DHOA-FNN model. The proposed DHOA-FNN technique involves four different stages namely, preprocessing, feature extraction, classification, and parameter tuning. In addition to the above, the proposed DHOA-FNN model has… More
  •   Views:320       Downloads:286        Download PDF
  • Automated Patient Discomfort Detection Using Deep Learning
  • Abstract The Internet of Things (IoT) has been transformed almost all fields of life, but its impact on the healthcare sector has been notable. Various IoT-based sensors are used in the healthcare sector and offer quality and safe care to patients. This work presents a deep learning-based automated patient discomfort detection system in which patients’ discomfort is non-invasively detected. To do this, the overhead view patients’ data set has been recorded. For testing and evaluation purposes, we investigate the power of deep learning by choosing a Convolution Neural Network (CNN) based model. The model uses confidence maps and detects 18 different… More
  •   Views:281       Downloads:300        Download PDF
  • IoMT-Enabled Fusion-Based Model to Predict Posture for Smart Healthcare Systems
  • Abstract Smart healthcare applications depend on data from wearable sensors (WSs) mounted on a patient’s body for frequent monitoring information. Healthcare systems depend on multi-level data for detecting illnesses and consequently delivering correct diagnostic measures. The collection of WS data and integration of that data for diagnostic purposes is a difficult task. This paper proposes an Errorless Data Fusion (EDF) approach to increase posture recognition accuracy. The research is based on a case study in a health organization. With the rise in smart healthcare systems, WS data fusion necessitates careful attention to provide sensitive analysis of the recognized illness. As a… More
  •   Views:289       Downloads:278        Download PDF
  • Blockchain Based Secured Load Balanced Task Scheduling Approach for Fitness Service
  • Abstract In recent times, the evolution of blockchain technology has got huge attention from the research community due to its versatile applications and unique security features. The IoT has shown wide adoption in various applications including smart cities, healthcare, trade, business, etc. Among these applications, fitness applications have been widely considered for smart fitness systems. The users of the fitness system are increasing at a high rate thus the gym providers are constantly extending the fitness facilities. Thus, scheduling such a huge number of requests for fitness exercise is a big challenge. Secondly, the user fitness data is critical thus securing… More
  •   Views:308       Downloads:287        Download PDF
  • Encoder-Decoder Based LSTM Model to Advance User QoE in 360-Degree Video
  • Abstract The development of multimedia content has resulted in a massive increase in network traffic for video streaming. It demands such types of solutions that can be addressed to obtain the user's Quality-of-Experience (QoE). 360-degree videos have already taken up the user's behavior by storm. However, the users only focus on the part of 360-degree videos, known as a viewport. Despite the immense hype, 360-degree videos convey a loathsome side effect about viewport prediction, making viewers feel uncomfortable because user viewport needs to be pre-fetched in advance. Ideally, we can minimize the bandwidth consumption if we know what the user motion… More
  •   Views:302       Downloads:307        Download PDF
  • A Zero-Watermark Scheme Based on Quaternion Generalized Fourier Descriptor for Multiple Images
  • Abstract Most of the existing zero-watermark schemes for medical images are only appropriate for a single grayscale image. When they protect a large number of medical images, repeating operations will cause a significant amount of time and storage costs. Hence, this paper proposes an efficient zero-watermark scheme for multiple color medical images based on quaternion generalized Fourier descriptor (QGFD). Firstly, QGFD is utilized to compute the feature invariants of each color image, then the representative features of each image are selected, stacked, and reshaped to generate a feature matrix, which is then binarized to get a binary feature image. Copyright information… More
  •   Views:279       Downloads:299        Download PDF
  • Performance Evaluation of Topological Infrastructure in Internet-of-Things-Enabled Serious Games
  • Abstract Serious games have recently enticed many researchers due to their wide range of capabilities. A serious game is a mean of gaming for a serious job such as healthcare, education, and entertainment purposes. With the advancement in the Internet of Things, new research directions are paving the way in serious games. However, the internet connectivity of players in Internet-of-things-enabled serious games is a matter of concern and has been worth investigating. Different studies on topologies, frameworks, and architecture of communication technologies are conducted to integrate them with serious games on machine and network levels. However, the Internet of things, whose… More
  •   Views:280       Downloads:276        Download PDF
  • A Novel Workload-Aware and Optimized Write Cycles in NVRAM
  • Abstract With the emergence of the Internet of things (IoT), embedded systems have now changed its dimensionality and it is applied in various domains such as healthcare, home automation and mainly Industry 4.0. These Embedded IoT devices are mostly battery-driven. It has been analyzed that usage of Dynamic Random-Access Memory (DRAM) centered core memory is considered the most significant source of high energy utility in Embedded IoT devices. For achieving the low power consumption in these devices, Non-volatile memory (NVM) devices such as Parameter Random Access Memory (PRAM) and Spin-Transfer Torque Magnetic Random-Access Memory (STT-RAM) are becoming popular among main memory… More
  •   Views:299       Downloads:290        Download PDF
  • Edge Metric Dimension of Honeycomb and Hexagonal Networks for IoT
  • Abstract Wireless Sensor Network (WSN) is considered to be one of the fundamental technologies employed in the Internet of things (IoT); hence, enabling diverse applications for carrying out real-time observations. Robot navigation in such networks was the main motivation for the introduction of the concept of landmarks. A robot can identify its own location by sending signals to obtain the distances between itself and the landmarks. Considering networks to be a type of graph, this concept was redefined as metric dimension of a graph which is the minimum number of nodes needed to identify all the nodes of the graph. This… More
  •   Views:359       Downloads:282        Download PDF
  • Novel Algorithm for Mobile Robot Path Planning in Constrained Environment
  • Abstract This paper presents a development of a novel path planning algorithm, called Generalized Laser simulator (GLS), for solving the mobile robot path planning problem in a two-dimensional map with the presence of constraints. This approach gives the possibility to find the path for a wheel mobile robot considering some constraints during the robot movement in both known and unknown environments. The feasible path is determined between the start and goal positions by generating wave of points in all direction towards the goal point with adhering to constraints. In simulation, the proposed method has been tested in several working environments with… More
  •   Views:315       Downloads:312        Download PDF
  • New 5G Kaiser-Based Windowing to Reduce Out of Band Emission
  • Abstract OFDM based waveforms are considered as the main part of the latest cellular communications standard (namely 5G). Many inherited problems from the OFDM-Based LTE are still under investigation. Getting rid of the out of band emissions is one of these problems. Ensuring low out of band emission (OOBE) is deemed as one of the most critical challenges to support development of future technologies such as 6G and beyond. Universal Filtered Multi Carrier (UFMC) has been considered as one of the candidate waveforms for the 5G communications due to its robustness against Inter Carrier Interference (ICI) and the Inter Symbol Interference… More
  •   Views:330       Downloads:293        Download PDF
  • Efficient Joint Key Authentication Model in E-Healthcare
  • Abstract Many patients have begun to use mobile applications to handle different health needs because they can better access high-speed Internet and smartphones. These devices and mobile applications are now increasingly used and integrated through the medical Internet of Things (mIoT). mIoT is an important part of the digital transformation of healthcare, because it can introduce new business models and allow efficiency improvements, cost control and improve patient experience. In the mIoT system, when migrating from traditional medical services to electronic medical services, patient protection and privacy are the priorities of each stakeholder. Therefore, it is recommended to use different user… More
  •   Views:291       Downloads:276        Download PDF
  • Evaluating the Efficiency of CBAM-Resnet Using Malaysian Sign Language
  • Abstract The deaf-mutes population is constantly feeling helpless when others do not understand them and vice versa. To fill this gap, this study implements a CNN-based neural network, Convolutional Based Attention Module (CBAM), to recognise Malaysian Sign Language (MSL) in videos recognition. This study has created 2071 videos for 19 dynamic signs. Two different experiments were conducted for dynamic signs, using CBAM-3DResNet implementing ‘Within Blocks’ and ‘Before Classifier’ methods. Various metrics such as the accuracy, loss, precision, recall, F1-score, confusion matrix, and training time were recorded to evaluate the models’ efficiency. Results showed that CBAM-ResNet models had good performances in videos… More
  •   Views:330       Downloads:291        Download PDF
  • Optical Flow with Learning Feature for Deformable Medical Image Registration
  • Abstract Deformable medical image registration plays a vital role in medical image applications, such as placing different temporal images at the same time point or different modality images into the same coordinate system. Various strategies have been developed to satisfy the increasing needs of deformable medical image registration. One popular registration method is estimating the displacement field by computing the optical flow between two images. The motion field (flow field) is computed based on either gray-value or handcrafted descriptors such as the scale-invariant feature transform (SIFT). These methods assume that illumination is constant between images. However, medical images may not always… More
  •   Views:261       Downloads:284        Download PDF
  • Chaotic Whale Optimized Fractional Order PID Controller Design for Desalination Process
  • Abstract The main aim of this work is to design a suitable Fractional Order Proportionl Integral Derivative (FOPID) controller with Chaotic Whale Optimization Algorithm (CWOA) for a RO desalination system. Continuous research on Reverse Osmosis (RO) desalination plants is a promising technique for satisfaction with sustainable and efficient RO plants. This work implements CWOA based FOPID for the simulation of reverse osmosis (RO) desalination process for both servo and regulatory problems. Mathematical modeling is a vital constituent of designing advanced and developed engineering processes, which helps to gain a deep study of processes to predict the performance, more efficiently. Numerous approaches… More
  •   Views:265       Downloads:271        Download PDF
  • Intelligent Transmission Control for Efficient Operations in SDN
  • Abstract Although the Software-Defined Network (SDN) is a well-controlled and efficient network but the complexity of open flow switches in SDN causes multiple issues. Many solutions have been proposed so far for the prevention of errors and mistakes in it but yet, there is still no smooth transmission of pockets from source to destination specifically when irregular movements follow the destination host in SDN, the errors include packet loss, data compromise etc. The accuracy of packets received at their desired destination is possible if networks for pockets and hosts are monitored instead of analysis of network snapshot statistically for the state,… More
  •   Views:327       Downloads:276        Download PDF
  • Generating A New Shilling Attack for Recommendation Systems
  • Abstract A collaborative filtering-based recommendation system has been an integral part of e-commerce and e-servicing. To keep the recommendation systems reliable, authentic, and superior, the security of these systems is very crucial. Though the existing shilling attack detection methods in collaborative filtering are able to detect the standard attacks, in this paper, we prove that they fail to detect a new or unknown attack. We develop a new attack model, named Obscure attack, with unknown features and observed that it has been successful in biasing the overall top-N list of the target users as intended. The Obscure attack is able to… More
  •   Views:273       Downloads:261        Download PDF
  • Gaining-Sharing Knowledge Based Algorithm for Solving Stochastic Programming Problems
  • Abstract This paper presents a novel application of metaheuristic algorithms for solving stochastic programming problems using a recently developed gaining sharing knowledge based optimization (GSK) algorithm. The algorithm is based on human behavior in which people gain and share their knowledge with others. Different types of stochastic fractional programming problems are considered in this study. The augmented Lagrangian method (ALM) is used to handle these constrained optimization problems by converting them into unconstrained optimization problems. Three examples from the literature are considered and transformed into their deterministic form using the chance-constrained technique. The transformed problems are solved using GSK algorithm and… More
  •   Views:276       Downloads:295        Download PDF
  • Detection of Low Sugar Concentration Solution Using Frequency Selective Surface (FSS)
  • Abstract Sugar is important in daily food intake since it is used as food preservative and sweetener. Therefore, is important to analyze the influence of sugar on the spectroscopic properties of the sample. Terahertz spectroscopy is proven to be useful and an efficient method for sugar detection as well as for future food quality industry. However, the lack of detection sensitivity in Terahertz Spectroscopy has prevented it from being used in a widespread spectroscopic analysis technology. In this paper, Frequency Selective Surface (FSS) using the Terahertz Spectroscopy Time Domain Spectrum (THz-TDS) which operates at terahertz frequency range has been demonstrated for… More
  •   Views:290       Downloads:302        Download PDF
  • Machine Learning-Based Advertisement Banner Identification Technique for Effective Piracy Website Detection Process
  • Abstract In the contemporary world, digital content that is subject to copyright is facing significant challenges against the act of copyright infringement. Billions of dollars are lost annually because of this illegal act. The current most effective trend to tackle this problem is believed to be blocking those websites, particularly through affiliated government bodies. To do so, an effective detection mechanism is a necessary first step. Some researchers have used various approaches to analyze the possible common features of suspected piracy websites. For instance, most of these websites serve online advertisement, which is considered as their main source of revenue. In… More
  •   Views:367       Downloads:333        Download PDF
  • Incremental Learning Framework for Mining Big Data Stream
  • Abstract At this current time, data stream classification plays a key role in big data analytics due to its enormous growth. Most of the existing classification methods used ensemble learning, which is trustworthy but these methods are not effective to face the issues of learning from imbalanced big data, it also supposes that all data are pre-classified. Another weakness of current methods is that it takes a long evaluation time when the target data stream contains a high number of features. The main objective of this research is to develop a new method for incremental learning based on the proposed ant… More
  •   Views:287       Downloads:279        Download PDF
  • BERT-CNN: A Deep Learning Model for Detecting Emotions from Text
  • Abstract Due to the widespread usage of social media in our recent daily lifestyles, sentiment analysis becomes an important field in pattern recognition and Natural Language Processing (NLP). In this field, users’ feedback data on a specific issue are evaluated and analyzed. Detecting emotions within the text is therefore considered one of the important challenges of the current NLP research. Emotions have been widely studied in psychology and behavioral science as they are an integral part of the human nature. Emotions describe a state of mind of distinct behaviors, feelings, thoughts and experiences. The main objective of this paper is to… More
  •   Views:336       Downloads:354        Download PDF
  • Multi-Scale Image Segmentation Model for Fine-Grained Recognition of Zanthoxylum Rust
  • Abstract Zanthoxylum bungeanum Maxim, generally called prickly ash, is widely grown in China. Zanthoxylum rust is the main disease affecting the growth and quality of Zanthoxylum. Traditional method for recognizing the degree of infection of Zanthoxylum rust mainly rely on manual experience. Due to the complex colors and shapes of rust areas, the accuracy of manual recognition is low and difficult to be quantified. In recent years, the application of artificial intelligence technology in the agricultural field has gradually increased. In this paper, based on the DeepLabV2 model, we proposed a Zanthoxylum rust image segmentation model based on the FASPP module… More
  •   Views:261       Downloads:263        Download PDF
  • The Mathematical Model for Streptococcus suis Infection in Pig-Human Population with Humidity Effect
  • Abstract In this paper, we developed a mathematical model for Streptococcus suis, which is an epidemic by considering the moisture that affects the infection. The disease is caused by Streptococcus suis infection found in pigs which can be transmitted to humans. The patients of Streptococcus suis were generally found in adults males and the elderly who contacted pigs or who ate uncooked pork. In human cases, the infection can cause a severe illness and death. This disease has an impact to the financial losses in the swine industry. In the development of models for this disease, we have divided the population… More
  •   Views:347       Downloads:266        Download PDF
  • SSA-HIAST: A Novel Framework for Code Clone Detection
  • Abstract In the recent era of software development, reusing software is one of the major activities that is widely used to save time. To reuse software, the copy and paste method is used and this whole process is known as code cloning. This activity leads to problems like difficulty in debugging, increase in time to debug and manage software code. In the literature, various algorithms have been developed to find out the clones but it takes too much time as well as more space to figure out the clones. Unfortunately, most of them are not scalable. This problem has been targeted… More
  •   Views:243       Downloads:284        Download PDF
  • Live Migration of Virtual Machines Using a Mamdani Fuzzy Inference System
  • Abstract Efforts were exerted to enhance the live virtual machines (VMs) migration, including performance improvements of the live migration of services to the cloud. The VMs empower the cloud users to store relevant data and resources. However, the utilization of servers has increased significantly because of the virtualization of computer systems, leading to a rise in power consumption and storage requirements by data centers, and thereby the running costs. Data center migration technologies are used to reduce risk, minimize downtime, and streamline and accelerate the data center move process. Indeed, several parameters, such as non-network overheads and downtime adjustment, may impact… More
  •   Views:262       Downloads:288        Download PDF
  • Robust Reversible Audio Watermarking Scheme for Telemedicine and Privacy Protection
  • Abstract The leakage of medical audio data in telemedicine seriously violates the privacy of patients. In order to avoid the leakage of patient information in telemedicine, a two-stage reversible robust audio watermarking algorithm is proposed to protect medical audio data. The scheme decomposes the medical audio into two independent embedding domains, embeds the robust watermark and the reversible watermark into the two domains respectively. In order to ensure the audio quality, the Hurst exponent is used to find a suitable position for watermark embedding. Due to the independence of the two embedding domains, the embedding of the second-stage reversible watermark will… More
  •   Views:313       Downloads:291        Download PDF
  • A Deep Two-State Gated Recurrent Unit for Particulate Matter (PM2.5) Concentration Forecasting
  • Abstract Air pollution is a significant problem in modern societies since it has a serious impact on human health and the environment. Particulate Matter (PM2.5) is a type of air pollution that contains of interrupted elements with a diameter less than or equal to 2.5 m. For risk assessment and epidemiological investigations, a better knowledge of the spatiotemporal variation of PM2.5 concentration in a constant space-time area is essential. Conventional spatiotemporal interpolation approaches commonly relying on robust presumption by limiting interpolation algorithms to those with explicit and basic mathematical expression, ignoring a plethora of hidden but crucial manipulating aspects. Many advanced… More
  •   Views:381       Downloads:282        Download PDF
  • A Robust Video Watermarking Scheme with Squirrel Search Algorithm
  • Abstract Advancement in multimedia technology has resulted in protection against distortion, modification, and piracy. For implementing such protection, we have an existing technique called watermarking but obtaining desired distortion level with sufficient robustness is a challenging task for watermarking in multimedia applications. In the paper, we proposed a smart technique for video watermarking associating meta-heuristic algorithms along with an embedding method to gain an optimized efficiency. The main aim of the optimization algorithm is to obtain solutions with maximum robustness, and which should not exceed the set threshold of quality. To represent the accuracy of the proposed scheme, we employ a… More
  •   Views:287       Downloads:266        Download PDF
  • Attention-Based Bi-LSTM Model for Arabic Depression Classification
  • Abstract Depression is a common mental health issue that affects a large percentage of people all around the world. Usually, people who suffer from this mood disorder have issues such as low concentration, dementia, mood swings, and even suicide. A social media platform like Twitter allows people to communicate as well as share photos and videos that reflect their moods. Therefore, the analysis of social media content provides insight into individual moods, including depression. Several studies have been conducted on depression detection in English and less in Arabic. The detection of depression from Arabic social media lags behind due the complexity… More
  •   Views:261       Downloads:267        Download PDF
  • Robust Watermarking Scheme for NIfTI Medical Images
  • Abstract Computed Tomography (CT) scan and Magnetic Resonance Imaging (MRI) technologies are widely used in medical field. Within the last few months, due to the increased use of CT scans, millions of patients have had their CT scans done. So, as a result, images showing the Corona Virus for diagnostic purposes were digitally transmitted over the internet. The major problem for the world health care system is a multitude of attacks that affect copyright protection and other ethical issues as images are transmitted over the internet. As a result, it is important to apply a robust and secure watermarking technique to… More
  •   Views:298       Downloads:272        Download PDF
  • Analysis and Modeling of Propagation in Tunnel at 3.7 and 28 GHz
  • Abstract In present-day society, train tunnels are extensively used as a means of transportation. Therefore, to ensure safety, streamlined train operations, and uninterrupted internet access inside train tunnels, reliable wave propagation modeling is required. We have experimented and measured wave propagation models in a 1674 m long straight train tunnel in South Korea. The measured path loss and the received signal strength were modeled with the Close-In (CI), Floating intercept (FI), CI model with a frequency-weighted path loss exponent (CIF), and alpha-beta-gamma (ABG) models, where the model parameters were determined using minimum mean square error (MMSE) methods. The measured and the… More
  •   Views:300       Downloads:266        Download PDF
  • Deep Learning Based Automated Diagnosis of Skin Diseases Using Dermoscopy
  • Abstract Biomedical image analysis has been exploited considerably by recent technology involvements, carrying about a pattern shift towards ‘automation’ and ‘error free diagnosis’ classification methods with markedly improved accurate diagnosis productivity and cost effectiveness. This paper proposes an automated deep learning model to diagnose skin disease at an early stage by using Dermoscopy images. The proposed model has four convolutional layers, two maxpool layers, one fully connected layer and three dense layers. All the convolutional layers are using the kernel size of 3 * 3 whereas the maxpool layer is using the kernel size of 2 * 2. The dermoscopy images… More
  •   Views:351       Downloads:318        Download PDF
  • Correlation Analysis of Energy Consumption of Agricultural Rotorcraft
  • Abstract With the rapid development of unmanned aerial vehicle technology, unmanned aerial vehicles (UAVs) have been widely used in the field of agricultural plant protection. Compared with fuel-driven UAVs, electrically driven rotorcrafts have many advantages such as lower cost, simpler operation, good maneuverability and cleaner power, which them popular in the plant protection. However, electrical rotorcrafts still face battery problems in actual operation, which limits its working time and application. Aiming at this issue, this paper studied the influence of rotorcraft flight parameters on energy consumption through series of carefully designed flight experiments. First of all, the linear motion experiments have… More
  •   Views:245       Downloads:259        Download PDF
  • Interpretable and Adaptable Early Warning Learning Analytics Model
  • Abstract Major issues currently restricting the use of learning analytics are the lack of interpretability and adaptability of the machine learning models used in this domain. Interpretability makes it easy for the stakeholders to understand the working of these models and adaptability makes it easy to use the same model for multiple cohorts and courses in educational institutions. Recently, some models in learning analytics are constructed with the consideration of interpretability but their interpretability is not quantified. However, adaptability is not specifically considered in this domain. This paper presents a new framework based on hybrid statistical fuzzy theory to overcome these… More
  •   Views:295       Downloads:321        Download PDF
  • AMC Integrated Multilayer Wearable Antenna for Multiband WBAN Applications
  • Abstract In this paper, a compact, efficient and easy to fabricate wearable antenna integrated with Artificial Magnetic Conductor (AMC) is presented. Addition of slots and bevels/cuts in the rectangular monopole patch antenna yield a wide bandwidth along with band notches. The proposed antenna is backed with an AMC metasurface that changes the bidirectional radiation pattern to a unidirectional, thus, considerably reducing the Specific Absorption Ratio (SAR). The demonstrated antenna has a good coverage radiating away from the body and presents reduced radiation towards the body with a front-to-back ratio of 13 dB and maximum gain of 3.54 dB. The proposed design… More
  •   Views:317       Downloads:311        Download PDF
  • Optimization Analysis of Sustainable Solar Power System for Mobile Communication Systems
  • Abstract Cellular mobile technology has witnessed tremendous growth in recent times. One of the challenges facing the operators to extend the coverage of the networks to meet the rising demand for cellular mobile services is the power sources used to supply cellular towers with energy, especially in remote. Thus, switch from the conventional sources of energy to a greener and sustainable power model became a target of the academic and industrial sectors in many fields; one of these important fields is the telecommunication sector. Accordingly, this study aims to find the optimum sizing and techno-economic investigation of a solar photovoltaic scheme… More
  •   Views:366       Downloads:284        Download PDF
  • Efficient Forgery Detection Approaches for Digital Color Images
  • Abstract This paper is concerned with a vital topic in image processing: color image forgery detection. The development of computing capabilities has led to a breakthrough in hacking and forgery attacks on signal, image, and data communicated over networks. Hence, there is an urgent need for developing efficient image forgery detection algorithms. Two main types of forgery are considered in this paper: splicing and copy-move. Splicing is performed by inserting a part of an image into another image. On the other hand, copy-move forgery is performed by copying a part of the image into another position in the same image. The… More
  •   Views:295       Downloads:259        Download PDF
  • A DQN-Based Cache Strategy for Mobile Edge Networks
  • Abstract The emerging mobile edge networks with content caching capability allows end users to receive information from adjacent edge servers directly instead of a centralized data warehouse, thus the network transmission delay and system throughput can be improved significantly. Since the duplicate content transmissions between edge network and remote cloud can be reduced, the appropriate caching strategy can also improve the system energy efficiency of mobile edge networks to a great extent. This paper focuses on how to improve the network energy efficiency and proposes an intelligent caching strategy according to the cached content distribution model for mobile edge networks based… More
  •   Views:250       Downloads:260        Download PDF
  • Proposed Different Signal Processing Tools for Efficient Optical Wireless Communications
  • Abstract Optical Wireless Communication (OWC) is a new trend in communication systems to achieve large bandwidth, high bit rate, high security, fast deployment, and low cost. The basic idea of the OWC is to transmit data on unguided media with light. This system requires multi-carrier modulation such as Orthogonal Frequency Division Multiplexing (OFDM). This paper studies optical OFDM performance based on Intensity Modulation with Direct Detection (IM/DD) system. This system requires a non-negativity constraint. The paper presents a framework for wireless optical OFDM system that comprises (IM/DD) with different forms, Direct Current biased Optical OFDM (DCO-OFDM), Asymmetrically Clipped Optical OFDM (ACO-OFDM),… More
  •   Views:267       Downloads:268        Download PDF
  • Multi-Agent Deep Q-Networks for Efficient Edge Federated Learning Communications in Software-Defined IoT
  • Abstract Federated learning (FL) activates distributed on-device computation techniques to model a better algorithm performance with the interaction of local model updates and global model distributions in aggregation averaging processes. However, in large-scale heterogeneous Internet of Things (IoT) cellular networks, massive multi-dimensional model update iterations and resource-constrained computation are challenging aspects to be tackled significantly. This paper introduces the system model of converging software-defined networking (SDN) and network functions virtualization (NFV) to enable device/resource abstractions and provide NFV-enabled edge FL (eFL) aggregation servers for advancing automation and controllability. Multi-agent deep Q-networks (MADQNs) target to enforce a self-learning softwarization, optimize resource allocation… More
  •   Views:415       Downloads:272        Download PDF
  • Automated Identification Algorithm Using CNN for Computer Vision in Smart Refrigerators
  • Abstract Machine Learning has evolved with a variety of algorithms to enable state-of-the-art computer vision applications. In particular the need for automating the process of real-time food item identification, there is a huge surge of research so as to make smarter refrigerators. According to a survey by the Food and Agriculture Organization of the United Nations (FAO), it has been found that 1.3 billion tons of food is wasted by consumers around the world due to either food spoilage or expiry and a large amount of food is wasted from homes and restaurants itself. Smart refrigerators have been very successful in… More
  •   Views:334       Downloads:285        Download PDF
  • Modelling and Verification of Context-Aware Intelligent Assistive Formalism
  • Abstract Recent years have witnessed the expeditious evolution of intelligent smart devices and autonomous software technologies with the expanded domains of computing from workplaces to smart computing in everyday routine life activities. This trend has been rapidly advancing towards the new generation of systems where smart devices play vital roles in acting intelligently on behalf of the users. Context-awareness has emerged from the pervasive computing paradigm. Context-aware systems have the ability to acquire contextual information from the surrounding environment autonomously, perform reasoning on it, and then adapt their behaviors accordingly. With the proliferation of context-aware systems and smart sensors, real-time monitoring… More
  •   Views:301       Downloads:290        Download PDF
  • Two-Tier Clustering with Routing Protocol for IoT Assisted WSN
  • Abstract In recent times, Internet of Things (IoT) has become a hot research topic and it aims at interlinking several sensor-enabled devices mainly for data gathering and tracking applications. Wireless Sensor Network (WSN) is an important component in IoT paradigm since its inception and has become the most preferred platform to deploy several smart city application areas like home automation, smart buildings, intelligent transportation, disaster management, and other such IoT-based applications. Clustering methods are widely-employed energy efficient techniques with a primary purpose i.e., to balance the energy among sensor nodes. Clustering and routing processes are considered as Non-Polynomial (NP) hard problems… More
  •   Views:360       Downloads:275        Download PDF
  • Webpage Matching Based on Visual Similarity
  • Abstract With the rapid development of the Internet, the types of webpages are more abundant than in previous decades. However, it becomes severe that people are facing more and more significant network security risks and enormous losses caused by phishing webpages, which imitate the interface of real webpages and deceive the victims. To better identify and distinguish phishing webpages, a visual feature extraction method and a visual similarity algorithm are proposed. First, the visual feature extraction method improves the Vision-based Page Segmentation (VIPS) algorithm to extract the visual block and calculate its signature by perceptual hash technology. Second, the visual similarity… More
  •   Views:253       Downloads:261        Download PDF
  • Automated Grading of Breast Cancer Histopathology Images Using Multilayered Autoencoder
  • Abstract Breast cancer (BC) is the most widely recognized cancer in women worldwide. By 2018, 627,000 women had died of breast cancer (World Health Organization Report 2018). To diagnose BC, the evaluation of tumours is achieved by analysis of histological specimens. At present, the Nottingham Bloom Richardson framework is the least expensive approach used to grade BC aggressiveness. Pathologists contemplate three elements, 1. mitotic count, 2. gland formation, and 3. nuclear atypia, which is a laborious process that witness's variations in expert's opinions. Recently, some algorithms have been proposed for the detection of mitotic cells, but nuclear atypia in breast cancer… More
  •   Views:330       Downloads:278        Download PDF
  • Image Dehazing Based on Pixel Guided CNN with PAM via Graph Cut
  • Abstract Image dehazing is still an open research topic that has been undergoing a lot of development, especially with the renewed interest in machine learning-based methods. A major challenge of the existing dehazing methods is the estimation of transmittance, which is the key element of haze-affected imaging models. Conventional methods are based on a set of assumptions that reduce the solution search space. However, the multiplication of these assumptions tends to restrict the solutions to particular cases that cannot account for the reality of the observed image. In this paper we reduce the number of simplified hypotheses in order to attain… More
  •   Views:278       Downloads:262        Download PDF
  • A Novel Hybrid Tunicate Swarm Naked Mole-Rat Algorithm for Image Segmentation and Numerical Optimization
  • Abstract This paper provides a new optimization algorithm named as tunicate swarm naked mole-rat algorithm (TSNMRA) which uses hybridization concept of tunicate swarm algorithm (TSA) and naked mole-rat algorithm (NMRA). This newly developed algorithm uses the characteristics of both algorithms (TSA and NMRA) and enhance the exploration abilities of NMRA. Apart from the hybridization concept, important parameter of NMRA such as mating factor is made to be self-adaptive with the help of simulated annealing mutation operator and there is no need to define its value manually. For evaluating the working capabilities of proposed TSNMRA, it is tested for 100-digit challenge (CEC… More
  •   Views:313       Downloads:283        Download PDF
  • Twitter Arabic Sentiment Analysis to Detect Depression Using Machine Learning
  • Abstract Depression has been a major global concern for a long time, with the disease affecting aspects of many people's daily lives, such as their moods, eating habits, and social interactions. In Arabic culture, there is a lack of awareness regarding the importance of facing and curing mental health diseases. However, people all over the world, including Arab citizens, tend to express their feelings openly on social media, especially Twitter, as it is a platform designed to enable the expression of emotions through short texts, pictures, or videos. Users are inclined to treat their Twitter accounts as diaries because the platform… More
  •   Views:484       Downloads:358        Download PDF
  • Optimizing Energy Conservation in V2X Communications for 5G Networks
  • Abstract The smart vehicles are one of critical enablers for automated services in smart cities to provide intelligent transportation means without human intervention. In order to fulfil requirements, Vehicle-to-Anything(V2X) communications aims to manage massive connectivity and high traffic load on base stations and extend the range over multiple hops in 5G networks. However, V2X networking faces several challenges from dynamic topology caused by high velocity of nodes and routing overhead that degrades the network performance and increases energy consumption. The existing routing scheme for V2X networking lacks energy efficiency and scalability for high velocity nodes with dense distribution. In order to… More
  •   Views:306       Downloads:339        Download PDF
  • Algorithm Development of Cloud Removal from Solar Images Based on Pix2Pix Network
  • Abstract Sky clouds affect solar observations significantly. Their shadows obscure the details of solar features in observed images. Cloud-covered solar images are difficult to be used for further research without pre-processing. In this paper, the solar image cloud removing problem is converted to an image-to-image translation problem, with a used algorithm of the Pixel to Pixel Network (Pix2Pix), which generates a cloudless solar image without relying on the physical scattering model. Pix2Pix is consists of a generator and a discriminator. The generator is a well-designed U-Net. The discriminator uses PatchGAN structure to improve the details of the generated solar image, which… More
  •   Views:291       Downloads:291        Download PDF
  • Optimization of Interval Type-2 Fuzzy Logic System Using Grasshopper Optimization Algorithm
  • Abstract The estimation of the fuzzy membership function parameters for interval type 2 fuzzy logic system (IT2-FLS) is a challenging task in the presence of uncertainty and imprecision. Grasshopper optimization algorithm (GOA) is a fresh population based meta-heuristic algorithm that mimics the swarming behavior of grasshoppers in nature, which has good convergence ability towards optima. The main objective of this paper is to apply GOA to estimate the optimal parameters of the Gaussian membership function in an IT2-FLS. The antecedent part parameters (Gaussian membership function parameters) are encoded as a population of artificial swarm of grasshoppers and optimized using its algorithm.… More
  •   Views:313       Downloads:277        Download PDF
  • A Hybrid Modified Sine Cosine Algorithm Using Inverse Filtering and Clipping Methods for Low Autocorrelation Binary Sequences
  • Abstract The essential purpose of radar is to detect a target of interest and provide information concerning the target's location, motion, size, and other parameters. The knowledge about the pulse trains’ properties shows that a class of signals is mainly well suited to digital processing of increasing practical importance. A low autocorrelation binary sequence (LABS) is a complex combinatorial problem. The main problems of LABS are low Merit Factor (MF) and shorter length sequences. Besides, the maximum possible MF equals 12.3248 as infinity length is unable to be achieved. Therefore, this study implemented two techniques to propose a new metaheuristic algorithm… More
  •   Views:320       Downloads:273        Download PDF
  • Deep Neural Network and Pseudo Relevance Feedback Based Query Expansion
  • Abstract The neural network has attracted researchers immensely in the last couple of years due to its wide applications in various areas such as Data mining, Natural language processing, Image processing, and Information retrieval etc. Word embedding has been applied by many researchers for Information retrieval tasks. In this paper word embedding-based skip-gram model has been developed for the query expansion task. Vocabulary terms are obtained from the top “k” initially retrieved documents using the Pseudo relevance feedback model and then they are trained using the skip-gram model to find the expansion terms for the user query. The performance of the… More
  •   Views:271       Downloads:273        Download PDF
  • Path Planning Based on the Improved RRT* Algorithm for the Mining Truck
  • Abstract Planning a reasonable driving path for trucks in mining areas is a key point to improve mining efficiency. In this paper, a path planning method based on Rapidly-exploring Random Tree Star (RRT*) is proposed, and several optimizations are carried out in the algorithm. Firstly, the selection process of growth target points is optimized. Secondly, the process of selecting the parent node is optimized and a Dubins curve is used to constraint it. Then, the expansion process from tree node to random point is optimized by the gravitational repulsion field method and dynamic step method. In the obstacle detection process, Dubins… More
  •   Views:264       Downloads:275        Download PDF
  • VANET Jamming and Adversarial Attack Defense for Autonomous Vehicle Safety
  • Abstract The development of Vehicular Ad-hoc Network (VANET) technology is helping Intelligent Transportation System (ITS) services to become a reality. Vehicles can use VANETs to communicate safety messages on the road (while driving) and can inform their location and share road condition information in real-time. However, intentional and unintentional (e.g., packet/frame collision) wireless signal jamming can occur, which will degrade the quality of communication over the channel, preventing the reception of safety messages, and thereby posing a safety hazard to the vehicle's passengers. In this paper, VANET jamming detection applying Support Vector Machine (SVM) machine learning technology is used to classify… More
  •   Views:307       Downloads:328        Download PDF
  • Intelligent Model for Predicting the Quality of Services Violation
  • Abstract Cloud computing is providing IT services to its customer based on Service level agreements (SLAs). It is important for cloud service providers to provide reliable Quality of service (QoS) and to maintain SLAs accountability. Cloud service providers need to predict possible service violations before the emergence of an issue to perform remedial actions for it. Cloud users’ major concerns; the factors for service reliability are based on response time, accessibility, availability, and speed. In this paper, we, therefore, experiment with the parallel mutant-Particle swarm optimization (PSO) for the detection and predictions of QoS violations in terms of response time, speed,… More
  •   Views:310       Downloads:282        Download PDF
  • Computational Algorithms for the Analysis of Cancer Virotherapy Model
  • Abstract Cancer is a common term for many diseases that can affect any part of the body. In 2020, ten million people will die due to cancer. A worldwide leading cause of death is cancer by the World Health Organization (WHO) report. Interaction of cancer cells, viral therapy, and immune response are identified in this model. Mathematical and computational modeling is an effective tool to predict the dynamics of cancer virotherapy. The cell population is categorized into three parts like uninfected cells (x), infected cells (y), virus-free cells (v), and immune cells (z). The modeling of cancer-like diseases is based on… More
  •   Views:281       Downloads:269        Download PDF
  • Evolution of Desertification Types on the North Shore of Qinghai Lake
  • Abstract Land desertification is a widely concerned ecological environment problem. Studying the evolution trend of desertification types is of great significance to prevent and control land desertification. In this study, we applied the decision tree classification method, to study the land area and temporal and spatial change law of different types of desertification in the North Bank of Qinghai Lake area from 1987 to 2014, based on the current land use situation and TM remote sensing image data of Haiyan County, Qinghai Province, The results show that the area of mild desertification land and moderate desertification land in the study area… More
  •   Views:263       Downloads:277        Download PDF
  • Arabic Fake News Detection Using Deep Learning
  • Abstract Nowadays, an unprecedented number of users interact through social media platforms and generate a massive amount of content due to the explosion of online communication. However, because user-generated content is unregulated, it may contain offensive content such as fake news, insults, and harassment phrases. The identification of fake news and rumors and their dissemination on social media has become a critical requirement. They have adverse effects on users, businesses, enterprises, and even political regimes and governments. State of the art has tackled the English language for news and used feature-based algorithms. This paper proposes a model architecture to detect fake… More
  •   Views:340       Downloads:271        Download PDF
  • Citrus Diseases Recognition Using Deep Improved Genetic Algorithm
  • Abstract Agriculture is the backbone of each country, and almost 50% of the population is directly involved in farming. In Pakistan, several kinds of fruits are produced and exported the other countries. Citrus is an important fruit, and its production in Pakistan is higher than the other fruits. However, the diseases of citrus fruits such as canker, citrus scab, blight, and a few more impact the quality and quantity of this Fruit. The manual diagnosis of these diseases required an expert person who is always a time-consuming and costly procedure. In the agriculture sector, deep learning showing significant success in the… More
  •   Views:346       Downloads:307        Download PDF
  • Radio Optical Network Simulation Tool (RONST)
  • Abstract This paper presents a radio optical network simulation tool (RONST) for modeling optical-wireless systems. For a typical optical and electrical chain environment, performance should be optimized concurrently before system implementation. As a result, simulating such systems turns out to be a multidisciplinary problem. The governing equations are incompatible with co-simulation in the traditional environments of existing software (SW) packages. The ultra-wideband (UWB) technology is an ideal candidate for providing high-speed short-range access for wireless services. The limited wireless reach of this technology is a significant limitation. A feasible solution to the problem of extending UWB signals is to transmit these… More
  •   Views:436       Downloads:292        Download PDF
  • An Enhanced Privacy Preserving, Secure and Efficient Authentication Protocol for VANET
  • Abstract Vehicular ad hoc networks (VANETs) have attracted growing interest in both academia and industry because they can provide a viable solution that improves road safety and comfort for travelers on roads. However, wireless communications over open-access environments face many security and privacy issues that may affect deployment of large-scale VANETs. Researchers have proposed different protocols to address security and privacy issues in a VANET, and in this study we cryptanalyze some of the privacy preserving protocols to show that all existing protocols are vulnerable to the Sybil attack. The Sybil attack can be used by malicious actors to create fake… More
  •   Views:316       Downloads:289        Download PDF
  • Research on Optimization of Random Forest Algorithm Based on Spark
  • Abstract As society has developed, increasing amounts of data have been generated by various industries. The random forest algorithm, as a classification algorithm, is widely used because of its superior performance. However, the random forest algorithm uses a simple random sampling feature selection method when generating feature subspaces which cannot distinguish redundant features, thereby affecting its classification accuracy, and resulting in a low data calculation efficiency in the stand-alone mode. In response to the aforementioned problems, related optimization research was conducted with Spark in the present paper. This improved random forest algorithm performs feature extraction according to the calculated feature importance… More
  •   Views:266       Downloads:264        Download PDF
  • Prediction of Changed Faces with HSCNN
  • Abstract Convolutional Neural Networks (CNN) have been successfully employed in the field of image classification. However, CNN trained using images from several years ago may be unable to identify how such images have changed over time. Cross-age face recognition is, therefore, a substantial challenge. Several efforts have been made to resolve facial changes over time utilizing recurrent neural networks (RNN) with CNN. The structure of RNN contains hidden contextual information in a hidden state to transfer a state in the previous step to the next step. This paper proposes a novel model called Hidden State-CNN (HSCNN). This adds to CNN a… More
  •   Views:313       Downloads:387        Download PDF
  • Empathic Responses of Behavioral-Synchronization in Human-Agent Interaction
  • Abstract Artificial entities, such as virtual agents, have become more pervasive. Their long-term presence among humans requires the virtual agent's ability to express appropriate emotions to elicit the necessary empathy from the users. Affective empathy involves behavioral mimicry, a synchronized co-movement between dyadic pairs. However, the characteristics of such synchrony between humans and virtual agents remain unclear in empathic interactions. Our study evaluates the participant's behavioral synchronization when a virtual agent exhibits an emotional expression congruent with the emotional context through facial expressions, behavioral gestures, and voice. Participants viewed an emotion-eliciting video stimulus (negative or positive) with a virtual agent. The… More
  •   Views:420       Downloads:397        Download PDF
  • Design of QoS Aware Routing Protocol for IoT Assisted Clustered WSN
  • Abstract In current days, the domain of Internet of Things (IoT) and Wireless Sensor Networks (WSN) are combined for enhancing the sensor related data transmission in the forthcoming networking applications. Clustering and routing techniques are treated as the effective methods highly used to attain reduced energy consumption and lengthen the lifetime of the WSN assisted IoT networks. In this view, this paper presents an Ensemble of Metaheuristic Optimization based QoS aware Clustering with Multihop Routing (EMO-QoSCMR) Protocol for IoT assisted WSN. The proposed EMO-QoSCMR protocol aims to achieve QoS parameters such as energy, throughput, delay, and lifetime. The proposed model involves… More
  •   Views:345       Downloads:359        Download PDF
  • Continuous Tracking of GPS Signals with Data Wipe-Off Method
  • Abstract The decentralized pre-filter based vector tracking loop (VTL) configuration with data wipe-off (DWO) method of the Global Positioning System (GPS) receiver is proposed for performance enhancement. It is a challenging task to continuously track the satellites’ signals in weak signal environment for the GPS receiver. VTL is a very attractive technique as it can provide tracking capability in signal-challenged environments. In the VTL, each channel will not form a loop independently. On the contrary, the signals in the channels of VTL are shared with each other; the navigation processor in turn predicts the code phases. Thus, the receiver can successfully… More
  •   Views:253       Downloads:265        Download PDF
  • An Experimental Simulation of Addressing Auto-Configuration Issues for Wireless Sensor Networks
  • Abstract Applications of Wireless Sensor devices are widely used by various monitoring sections such as environmental monitoring, industrial sensing, habitat modeling, healthcare and enemy movement detection systems. Researchers were found that 16 bytes packet size (payload) requires Media Access Control (MAC) and globally unique network addresses overheads as more as the payload itself which is not reasonable in most situations. The approach of using a unique address isn't preferable for most Wireless Sensor Networks (WSNs) applications as well. Based on the mentioned drawbacks, the current work aims to fill the existing gap in the field area by providing two strategies. First,… More
  •   Views:274       Downloads:271        Download PDF
  • An IoT-Based Intrusion Detection System Approach for TCP SYN Attacks
  • Abstract The success of Internet of Things (IoT) deployment has emerged important smart applications. These applications are running independently on different platforms, almost everywhere in the world. Internet of Medical Things (IoMT), also referred as the healthcare Internet of Things, is the most widely deployed application against COVID-19 and offering extensive healthcare services that are connected to the healthcare information technologies systems. Indeed, with the impact of the COVID-19 pandemic, a large number of interconnected devices designed to create smart networks. These networks monitor patients from remote locations as well as tracking medication orders. However, IoT may be jeopardized by attacks… More
  •   Views:521       Downloads:419        Download PDF
  • Modeling of Explainable Artificial Intelligence for Biomedical Mental Disorder Diagnosis
  • Abstract The abundant existence of both structured and unstructured data and rapid advancement of statistical models stressed the importance of introducing Explainable Artificial Intelligence (XAI), a process that explains how prediction is done in AI models. Biomedical mental disorder, i.e., Autism Spectral Disorder (ASD) needs to be identified and classified at early stage itself in order to reduce health crisis. With this background, the current paper presents XAI-based ASD diagnosis (XAI-ASD) model to detect and classify ASD precisely. The proposed XAI-ASD technique involves the design of Bacterial Foraging Optimization (BFO)-based Feature Selection (FS) technique. In addition, Whale Optimization Algorithm (WOA) with… More
  •   Views:421       Downloads:288        Download PDF
  • TinyML-Based Fall Detection for Connected Personal Mobility Vehicles
  • Abstract A new wave of electric vehicles for personal mobility is currently crowding public spaces. They offer a sustainable and efficient way of getting around in urban environments, however, these devices bring additional safety issues, including serious accidents for riders. Thereby, taking advantage of a connected personal mobility vehicle, we present a novel on-device Machine Learning (ML)-based fall detection system that analyzes data captured from a range of sensors integrated on an on-board unit (OBU) prototype. Given the typical processing limitations of these elements, we exploit the potential of the TinyML paradigm, which enables embedding powerful ML algorithms in constrained units.… More
  •   Views:402       Downloads:306        Download PDF
  • LDSVM: Leukemia Cancer Classification Using Machine Learning
  • Abstract Leukemia is blood cancer, including bone marrow and lymphatic tissues, typically involving white blood cells. Leukemia produces an abnormal amount of white blood cells compared to normal blood. Deoxyribonucleic acid (DNA) microarrays provide reliable medical diagnostic services to help more patients find the proposed treatment for infections. DNA microarrays are also known as biochips that consist of microscopic DNA spots attached to a solid glass surface. Currently, it is difficult to classify cancers using microarray data. Nearly many data mining techniques have failed because of the small sample size, which has become more critical for organizations. However, they are not… More
  •   Views:417       Downloads:290        Download PDF
  • Computational Investigation of Multiband EMNZ Metamaterial Absorber for Terahertz Applications
  • Abstract This study presents an Epsilon Mu near-zero (EMNZ) nanostructured metamaterial absorber (NMMA) for visible regime applications. The resonator and dielectric layers are made of tungsten (W) and quartz (fused), where the working band is expanded by changing the resonator layer's design. Due to perfect impedance matching with plasmonic resonance characteristics, the proposed NMMA structure is achieved an excellent absorption of 99.99% at 571 THz, 99.50% at 488.26 THz, and 99.32% at 598 THz frequencies. The absorption mechanism is demonstrated by the theory of impedance, electric field, and power loss density distributions, respectively. The geometric parameters are explored and analyzed to… More
  •   Views:267       Downloads:282        Download PDF
  • CryptoNight Mining Algorithm with YAC Consensus for Social Media Marketing Using Blockchain
  • Abstract Social media is a platform in which user can create, share and exchange the knowledge/information. Social media marketing is to identify the different consumer's demands and engages them to create marketing resources. The popular social media platforms are Microsoft, Snapchat, Amazon, Flipkart, Google, eBay, Instagram, Facebook, Pin interest, and Twitter. The main aim of social media marketing deals with various business partners and build good relationship with millions of customers by satisfying their needs. Disruptive technology is replacing old approaches in the social media marketing to new technology-based marketing. However, this disruptive technology creates some issues like fake news, insecure,… More
  •   Views:295       Downloads:273        Download PDF
  • The Impact of Semi-Supervised Learning on the Performance of Intelligent Chatbot System
  • Abstract Artificial intelligent based dialog systems are getting attention from both business and academic communities. The key parts for such intelligent chatbot systems are domain classification, intent detection, and named entity recognition. Various supervised, unsupervised, and hybrid approaches are used to detect each field. Such intelligent systems, also called natural language understanding systems analyze user requests in sequential order: domain classification, intent, and entity recognition based on the semantic rules of the classified domain. This sequential approach propagates the downstream error; i.e., if the domain classification model fails to classify the domain, intent and entity recognition fail. Furthermore, training such intelligent… More
  •   Views:285       Downloads:288        Download PDF
  • Modeling of Artificial Intelligence Based Traffic Flow Prediction with Weather Conditions
  • Abstract Short-term traffic flow prediction (TFP) is an important area in intelligent transportation system (ITS), which is used to reduce traffic congestion. But the avail of traffic flow data with temporal features and periodic features are susceptible to weather conditions, making TFP a challenging issue. TFP process are significantly influenced by several factors like accident and weather. Particularly, the inclement weather conditions may have an extreme impact on travel time and traffic flow. Since most of the existing TFP techniques do not consider the impact of weather conditions on the TF, it is needed to develop effective TFP with the consideration… More
  •   Views:308       Downloads:302        Download PDF
  • Intelligent Classification Model for Biomedical Pap Smear Images on IoT Environment
  • Abstract Biomedical images are used for capturing the images for diagnosis process and to examine the present condition of organs or tissues. Biomedical image processing concepts are identical to biomedical signal processing, which includes the investigation, improvement, and exhibition of images gathered using x-ray, ultrasound, MRI, etc. At the same time, cervical cancer becomes a major reason for increased women's mortality rate. But cervical cancer is an identified at an earlier stage using regular pap smear images. In this aspect, this paper devises a new biomedical pap smear image classification using cascaded deep forest (BPSIC-CDF) model on Internet of Things (IoT)… More
  •   Views:326       Downloads:290        Download PDF
  • Industrial Automation Information Analogy for Smart Grid Security
  • Abstract Industrial automation or assembly automation is a strictly monitored environment, in which changes occur at a good speed. There are many types of entities in the focusing environment, and the data generated by these devices is huge. In addition, because the robustness is achieved by sensing redundant data, the data becomes larger. The data generating device, whether it is a sensing device or a physical device, streams the data to a higher-level deception device for calculation, so that it can be driven and configured according to the updated conditions. With the emergence of the Industry 4.0 concept that includes a… More
  •   Views:325       Downloads:285        Download PDF
  • OBSO Based Fractional PID for MPPT-Pitch Control of Wind Turbine Systems
  • Abstract In recent times, wind energy receives maximum attention and has become a significant green energy source globally. The wind turbine (WT) entered into several domains such as power electronics that are employed to assist the connection process of a wind energy system and grid. The turbulent characteristics of wind profile along with uncertainty in the design of WT make it highly challenging for prolific power extraction. The pitch control angle is employed to effectively operate the WT at the above nominal wind speed. Besides, the pitch controller needs to be intelligent for the extraction of sustainable secure energy and keep… More
  •   Views:293       Downloads:282        Download PDF
  • Optimization of Deep Learning Model for Plant Disease Detection Using Particle Swarm Optimizer
  • Abstract Plant diseases are a major impendence to food security, and due to a lack of key infrastructure in many regions of the world, quick identification is still challenging. Harvest losses owing to illnesses are a severe problem for both large farming structures and rural communities, motivating our mission. Because of the large range of diseases, identifying and classifying diseases with human eyes is not only time-consuming and labor intensive, but also prone to being mistaken with a high error rate. Deep learning-enabled breakthroughs in computer vision have cleared the road for smartphone-assisted plant disease and diagnosis. The proposed work describes… More
  •   Views:332       Downloads:288        Download PDF
  • Distance Matrix and Markov Chain Based Sensor Localization in WSN
  • Abstract Applications based on Wireless Sensor Networks (WSN) have shown to be quite useful in monitoring a particular geographic area of interest. Relevant geometries of the surrounding environment are essential to establish a successful WSN topology. But it is literally hard because constructing a localization algorithm that tracks the exact location of Sensor Nodes (SN) in a WSN is always a challenging task. In this research paper, Distance Matrix and Markov Chain (DM-MC) model is presented as node localization technique in which Distance Matrix and Estimation Matrix are used to identify the position of the node. The method further employs a… More
  •   Views:272       Downloads:374        Download PDF
  • Intelligent Fuzzy Based High Gain Non-Isolated Converter for DC Micro-Grids
  • Abstract Renewable electricity options, such as fuel cells, solar photovoltaic, and batteries, are being integrated, which has made DC micro-grids famous. For DC micro-grid systems, a multi input interleaved non-isolated dc-dc converter is suggested by the use of coupled inductor techniques. Since it compensates for mismatches in photovoltaic devices and allows for separate and continuous power flow from these sources. The proposed converter has the benefits of high gain, a low ripple in the output voltage, minimal stress voltage across the power semiconductor devices, a low ripple in inductor current, high power density, and high efficiency. Soft-switching techniques are used to… More
  •   Views:284       Downloads:276        Download PDF
  • Design and Simulation of Ring Network-on-Chip for Different Configured Nodes
  • Abstract The network-on-chip (NoC) technology is frequently referred to as a front-end solution to a back-end problem. The physical substructure that transfers data on the chip and ensures the quality of service begins to collapse when the size of semiconductor transistor dimensions shrinks and growing numbers of intellectual property (IP) blocks working together are integrated into a chip. The system on chip (SoC) architecture of today is so complex that not utilizing the crossbar and traditional hierarchical bus architecture. NoC connectivity reduces the amount of hardware required for routing and functions, allowing SoCs with NoC interconnect fabrics to operate at higher… More
  •   Views:316       Downloads:295        Download PDF
  • Improved DHOA-Fuzzy Based Load Scheduling in IoT Cloud Environment
  • Abstract Internet of things (IoT) has been significantly raised owing to the development of broadband access network, machine learning (ML), big data analytics (BDA), cloud computing (CC), and so on. The development of IoT technologies has resulted in a massive quantity of data due to the existence of several people linking through distinct physical components, indicating the status of the CC environment. In the IoT, load scheduling is realistic technique in distinct data center to guarantee the network suitability by falling the computer hardware and software catastrophe and with right utilize of resource. The ideal load balancer improves many factors of… More
  •   Views:307       Downloads:267        Download PDF
  • From Network Functions to NetApps: The 5GASP Methodology
  • Abstract As the 5G ecosystem continues its consolidation, the testing and validation of the innovations achieved by integrators and verticals service providers is of preponderant importance. In this line, 5GASP is a European H2020-funded project that aims at easing the idea-to-market process through the creation of an European testbed that is fully automated and self-service, in order to foster rapid development and testing of new and innovative 5G Network Applications (NetApps). The main objective of this paper is to present the 5GASP's unified methodology to design, develop and onboard NetApps within the scope of different vertical services, letting them use specific… More
  •   Views:294       Downloads:288        Download PDF
  • Integration of Fog Computing for Health Record Management Using Blockchain Technology
  • Abstract Internet of Medical Things (IoMT) is a breakthrough technology in the transfer of medical data via a communication system. Wearable sensor devices collect patient data and transfer them through mobile internet, that is, the IoMT. Recently, the shift in paradigm from manual data storage to electronic health recording on fog, edge, and cloud computing has been noted. These advanced computing technologies have facilitated medical services with minimum cost and available conditions. However, the IoMT raises a high concern on network security and patient data privacy in the health care system. The main issue is the transmission of health data with… More
  •   Views:342       Downloads:295        Download PDF
  • Object Detection for Cargo Unloading System Based on Fuzzy C Means
  • Abstract With the recent increase in the utilization of logistics and courier services, it is time for research on logistics systems fused with the fourth industry sector. Algorithm studies related to object recognition have been actively conducted in convergence with the emerging artificial intelligence field, but so far, algorithms suitable for automatic unloading devices that need to identify a number of unstructured cargoes require further development. In this study, the object recognition algorithm of the automatic loading device for cargo was selected as the subject of the study, and a cargo object recognition algorithm applicable to the automatic loading device is… More
  •   Views:289       Downloads:298        Download PDF
  • Building a Trust Model for Secure Data Sharing (TM-SDS) in Edge Computing Using HMAC Techniques
  • Abstract With the rapid growth of Internet of Things (IoT) based models, and the lack amount of data makes cloud computing resources insufficient. Hence, edge computing-based techniques are becoming more popular in present research domains that makes data storage, and processing effective at the network edges. There are several advanced features like parallel processing and data perception are available in edge computing. Still, there are some challenges in providing privacy and data security over networks. To solve the security issues in Edge Computing, Hash-based Message Authentication Code (HMAC) algorithm is used to provide solutions for preserving data from various attacks that… More
  •   Views:21       Downloads:15        Download PDF
  • Adaptive Runtime Monitoring of Service Level Agreement Violations in Cloud Computing
  • Abstract The cloud service level agreement (SLA) manage the relationship between service providers and consumers in cloud computing. SLA is an integral and critical part of modern era IT vendors and communication contracts. Due to low cost and flexibility more and more consumers delegate their tasks to cloud providers, the SLA emerges as a key aspect between the consumers and providers. Continuous monitoring of Quality of Service (QoS) attributes is required to implement SLAs because of the complex nature of cloud communication. Many other factors, such as user reliability, satisfaction, and penalty on violations are also taken into account. Currently, there… More
  •   Views:18       Downloads:22        Download PDF
  • Automated Deep Learning Empowered Breast Cancer Diagnosis Using Biomedical Mammogram Images
  • Abstract Biomedical image processing is a hot research topic which helps to majorly assist the disease diagnostic process. At the same time, breast cancer becomes the deadliest disease among women and can be detected by the use of different imaging techniques. Digital mammograms can be used for the earlier identification and diagnostic of breast cancer to minimize the death rate. But the proper identification of breast cancer has mainly relied on the mammography findings and results to increased false positives. For resolving the issues of false positives of breast cancer diagnosis, this paper presents an automated deep learning based breast cancer… More
  •   Views:18       Downloads:18        Download PDF
  • SSABA: Search Step Adjustment Based Algorithm
  • Abstract Finding the suitable solution to optimization problems is a fundamental challenge in various sciences. Optimization algorithms are one of the effective stochastic methods in solving optimization problems. In this paper, a new stochastic optimization algorithm called Search Step Adjustment Based Algorithm (SSABA) is presented to provide quasi-optimal solutions to various optimization problems. In the initial iterations of the algorithm, the step index is set to the highest value for a comprehensive search of the search space. Then, with increasing repetitions in order to focus the search of the algorithm in achieving the optimal solution closer to the global optimal, the… More
  •   Views:16       Downloads:14        Download PDF
  • SVM and KNN Based CNN Architectures for Plant Classification
  • Abstract Automatic plant classification through plant leaf is a classical problem in Computer Vision. Plants classification is challenging due to the introduction of new species with a similar pattern and look-a-like. Many efforts are made to automate plant classification using plant leaf, plant flower, bark, or stem. After much effort, it has been proven that leaf is the most reliable source for plant classification. But it is challenging to identify a plant with the help of leaf structure because plant leaf shows similarity in morphological variations, like sizes, textures, shapes, and venation. Therefore, it is required to normalize all plant leaves… More
  •   Views:20       Downloads:18        Download PDF
  • Adaptive Fuzzy Logic Controller for Harmonics Mitigation Using Particle Swarm Optimization
  • Abstract An excessive use of non-linear devices in industry results in current harmonics that degrades the power quality with an unfavorable effect on power system performance. In this research, a novel control technique-based Hybrid-Active Power-Filter (HAPF) is implemented for reactive power compensation and harmonic current component for balanced load by improving the Power-Factor (PF) and Total–Hormonic Distortion (THD) and the performance of a system. This work proposed a soft-computing technique based on Particle Swarm-Optimization (PSO) and Adaptive Fuzzy technique to avoid the phase delays caused by conventional control methods. Moreover, the control algorithms are implemented for an instantaneous reactive and active… More
  •   Views:16       Downloads:14        Download PDF
  • Binary Fruit Fly Swarm Algorithms for the Set Covering Problem
  • Abstract Currently, the industry is experiencing an exponential increase in dealing with binary-based combinatorial problems. In this sense, metaheuristics have been a common trend in the field in order to design approaches to solve them successfully. Thus, a well-known strategy consists in the use of algorithms based on discrete swarms transformed to perform in binary environments. Following the No Free Lunch theorem, we are interested in testing the performance of the Fruit Fly Algorithm, this is a bio-inspired metaheuristic for deducing global optimization in continuous spaces, based on the foraging behavior of the fruit fly, which usually has much better sensory… More
  •   Views:18       Downloads:15        Download PDF
  • Unified FPGA Design for the HEVC Dequantization and Inverse Transform Modules
  • Abstract As the newest standard, the High Efficiency Video Coding (HEVC) is specially designed to minimize the bitrate for video data transfer and to support High Definition (HD) and ULTRA HD video resolutions at the cost of increasing computational complexity relative to earlier standards like the H.264. Therefore, real-time video decoding with HEVC decoder becomes a challenging task. However, the Dequantization and Inverse Transform (DE/IT) are one of the computationally intensive modules in the HEVC decoder which are used to reconstruct the residual block. Thus, in this paper, a unified hardware architecture is proposed to implement the HEVC DE/IT module for… More
  •   Views:20       Downloads:18        Download PDF
  • An EFSM-Based Test Data Generation Approach in Model-Based Testing
  • Abstract Testing is an integral part of software development. Current fast-paced system developments have rendered traditional testing techniques obsolete. Therefore, automated testing techniques are needed to adapt to such system developments speed. Model-based testing (MBT) is a technique that uses system models to generate and execute test cases automatically. It was identified that the test data generation (TDG) in many existing model-based test case generation (MB-TCG) approaches were still manual. An automatic and effective TDG can further reduce testing cost while detecting more faults. This study proposes an automated TDG approach in MB-TCG using the extended finite state machine model (EFSM).… More
  •   Views:18       Downloads:13        Download PDF
  • Parking Availability Prediction with Coarse-Grained Human Mobility Data
  • Abstract Nowadays, the anticipation of parking-space demand is an instrumental service in order to reduce traffic congestion levels in urban spaces. The purpose of our work is to study, design and develop a parking-availability predictor that extracts the knowledge from human mobility data, based on the anonymized human displacements of an urban area, and also from weather conditions. Most of the existing solutions for this prediction take as contextual data the current road-traffic state defined at very high temporal or spatial resolution. However, access to this type of fine-grained location data is usually quite limited due to several economic or privacy-related… More
  •   Views:19       Downloads:15        Download PDF
  • Enhance Egocentric Grasp Recognition Based Flex Sensor Under Low Illumination
  • Abstract Egocentric recognition is exciting computer vision research by acquiring images and video from the first-person overview. However, an image becomes noisy and dark under low illumination conditions, making subsequent hand detection tasks difficult. Thus, image enhancement is necessary to make buried detail more visible. This article addresses the challenge of egocentric hand grasp recognition in low light conditions by utilizing the flex sensor and image enhancement algorithm based on adaptive gamma correction with weighting distribution. Initially, a flex sensor is installed to the thumb for object manipulation. The thumb placement that holds in a different position on the object of… More
  •   Views:14       Downloads:16        Download PDF
  • Efficient Data Compression of ECG Signal Based on Modified Discrete Cosine Transform
  • Abstract This paper introduced an efficient compression technique that uses the compressive sensing (CS) method to obtain and recover sparse electrocardiography (ECG) signals. The recovery of the signal can be achieved by using sampling rates lower than the Nyquist frequency. A novel analysis was proposed in this paper. To apply CS on ECG signal, the first step is to generate a sparse signal, which can be obtained using Modified Discrete Cosine Transform (MDCT) on the given ECG signal. This transformation is a promising key for other transformations used in this search domain and can be considered as the main contribution of… More
  •   Views:20       Downloads:17        Download PDF
  • PSO Based Multi-Objective Approach for Controlling PID Controller
  • Abstract CSTR (Continuous stirred tank reactor) is employed in process control and chemical industries to improve response characteristics and system efficiency. It has a highly nonlinear characteristic that includes complexities in its control and design. Dynamic performance is compassionate to change in system parameters which need more effort for planning a significant controller for CSTR. The reactor temperature changes in either direction from the defined reference value. It is important to note that the intensity of chemical actions inside the CSTR is dependent on the various levels of temperature, and deviation from reference values may cause degradation of biomass quality. Design… More
  •   Views:17       Downloads:15        Download PDF
  • Explainable Artificial Intelligence Solution for Online Retail
  • Abstract Artificial intelligence (AI) and machine learning (ML) help in making predictions and businesses to make key decisions that are beneficial for them. In the case of the online shopping business, it’s very important to find trends in the data and get knowledge of features that helps drive the success of the business. In this research, a dataset of 12,330 records of customers has been analyzed who visited an online shopping website over a period of one year. The main objective of this research is to find features that are relevant in terms of correctly predicting the purchasing decisions made by… More
  •   Views:17       Downloads:13        Download PDF
  • Traffic Priority-Aware Medical Data Dissemination Scheme for IoT Based WBASN Healthcare Applications
  • Abstract Wireless Body Area Sensor Network (WBASN) is an automated system for remote health monitoring of patients. WBASN under umbrella of Internet of Things (IoT) is comprised of small Biomedical Sensor Nodes (BSNs) that can communicate with each other without human involvement. These BSNs can be placed on human body or inside the skin of the patients to regularly monitor their vital signs. The BSNs generate critical data as it is related to patient's health. The data traffic can be classified as Sensitive Data (SD) and Non-sensitive Data (ND) packets based on the value of vital signs. These data packets have… More
  •   Views:16       Downloads:14        Download PDF
  • Gauss Gradient and SURF Features for Landmine Detection from GPR Images
  • Abstract Recently, ground-penetrating radar (GPR) has been extended as a well-known area to investigate the subsurface objects. However, its output has a low resolution, and it needs more processing for more interpretation. This paper presents two algorithms for landmine detection from GPR images. The first algorithm depends on a multi-scale technique. A Gaussian kernel with a particular scale is convolved with the image, and after that, two gradients are estimated; horizontal and vertical gradients. Then, histogram and cumulative histogram are estimated for the overall gradient image. The bin values on the cumulative histogram are used for discrimination between images with and… More
  •   Views:15       Downloads:12        Download PDF
  • Machine Learning-Based Predictions on the Self-Heating Characteristics of Nanocomposites with Hybrid Fillers
  • Abstract A machine learning-based prediction of the self-heating characteristics and the negative temperature coefficient (NTC) effect detection of nanocomposites incorporating carbon nanotube (CNT) and carbon fiber (CF) is proposed. The CNT content was fixed at 4.0 wt.%, and CFs having three different lengths (0.1, 3 and 6 mm) at dosage of 1.0 wt.% were added to fabricate the specimens. The self-heating properties of the specimens were evaluated via self-heating tests. Based on the experiment results, two types of artificial neural network (ANN) models were constructed to predict the surface temperature and electrical resistance, and to detect a severe NTC effect. The… More
  •   Views:18       Downloads:17        Download PDF
  • Atmospheric Convection Model Based Digital Confidentiality Scheme
  • Abstract Nonlinear dynamics is a fascinating area that is intensely affecting a wide range of different disciplines of science and technology globally. The combination of different innovative topics of information security and high-speed computing has added new visions into the behavior of complex nonlinear dynamical systems which uncovered amazing results even in the least difficult nonlinear models. The generation of complex actions from a very simple dynamical method has a strong relation with information security. The protection of digital content is one of the inescapable concerns of the digitally advanced world. Today, information plays an important role in everyday life and… More
  •   Views:21       Downloads:20        Download PDF
  • A Real-Time Oral Cavity Gesture Based Words Synthesizer Using Sensors
  • Abstract The present system experimentally demonstrates a synthesis of syllables and words from tongue manoeuvers in multiple languages, captured by four oral sensors only. For an experimental demonstration of the system used in the oral cavity, a prototype tooth model was used. Based on the principle developed in a previous publication by the author(s), the proposed system has been implemented using the oral cavity (tongue, teeth, and lips) features alone, without the glottis and the larynx. The positions of the sensors in the proposed system were optimized based on articulatory (oral cavity) gestures estimated by simulating the mechanism of human speech.… More
  •   Views:15       Downloads:13        Download PDF
  • Use of Local Region Maps on Convolutional LSTM for Single-Image HDR Reconstruction
  • Abstract Low dynamic range (LDR) images captured by consumer cameras have a limited luminance range. As the conventional method for generating high dynamic range (HDR) images involves merging multiple-exposure LDR images of the same scene (assuming a stationary scene), we introduce a learning-based model for single-image HDR reconstruction. An input LDR image is sequentially segmented into the local region maps based on the cumulative histogram of the input brightness distribution. Using the local region maps, SParam-Net estimates the parameters of an inverse tone mapping function to generate a pseudo-HDR image. We process the segmented region maps as the input sequences on… More
  •   Views:14       Downloads:12        Download PDF
  • Transfer Learning-based Computer-aided Diagnosis System for Predicting Grades of Diabetic Retinopathy
  • Abstract Diabetic retinopathy (DR) diagnosis through digital fundus images requires clinical experts to recognize the presence and importance of many intricate features. This task is very difficult for ophthalmologists and time-consuming. Therefore, many computer-aided diagnosis (CAD) systems were developed to automate this screening process of DR. In this paper, a CAD-DR system is proposed based on preprocessing and a pre-train transfer learning-based convolutional neural network (PCNN) to recognize the five stages of DR through retinal fundus images. To develop this CAD-DR system, a preprocessing step is performed in a perceptual-oriented color space to enhance the DR-related lesions and then a standard… More
  •   Views:13       Downloads:13        Download PDF
  • SBOOSP for Massive Devices in 5G WSNs Using Conformable Chaotic Maps
  • Abstract The commercialization of the fifth-generation (5G) wireless network has begun. Massive devices are being integrated into 5G-enabled wireless sensor networks (5G WSNs) to deliver a variety of valuable services to network users. However, there are rising fears that 5G WSNs will expose sensitive user data to new security vulnerabilities. For secure end-to-end communication, key agreement and user authentication have been proposed. However, when billions of massive devices are networked to collect and analyze complex user data, more stringent security approaches are required. Data integrity, non-repudiation, and authentication necessitate special-purpose subtree-based signature mechanisms that are pretty difficult to create in practice.… More
  •   Views:15       Downloads:12        Download PDF
  • Profiling Casualty Severity Levels of Road Accident Using Weighted Majority Voting
  • Abstract To determine the individual circumstances that account for a road traffic accident, it is crucial to consider the unplanned connections amongst various factors related to a crash that results in high casualty levels. Analysis of the road accident data concentrated mainly on categorizing accidents into different types using individually built classification methods which limit the prediction accuracy and fitness of the model. In this article, we proposed a multi-model hybrid framework of the weighted majority voting (WMV) scheme with parallel structure, which is designed by integrating individually implemented multinomial logistic regression (MLR) and multilayer perceptron (MLP) classifiers using three different… More
  •   Views:14       Downloads:12        Download PDF
  • Metaheuristic Optimization Algorithm for Signals Classification of Electroencephalography Channels
  • Abstract Digital signal processing of electroencephalography (EEG) data is now widely utilized in various applications, including motor imagery classification, seizure detection and prediction, emotion classification, mental task classification, drug impact identification and sleep state classification. With the increasing number of recorded EEG channels, it has become clear that effective channel selection algorithms are required for various applications. Guided Whale Optimization Method (Guided WOA), a suggested feature selection algorithm based on Stochastic Fractal Search (SFS) technique, evaluates the chosen subset of channels. This may be used to select the optimum EEG channels for use in Brain-Computer Interfaces (BCIs), the method for identifying… More
  •   Views:17       Downloads:17        Download PDF
  • Skeleton Split Strategies for Spatial Temporal Graph Convolution Networks
  • Abstract Action recognition has been recognized as an activity in which individuals’ behaviour can be observed. Assembling profiles of regular activities such as activities of daily living can support identifying trends in the data during critical events. A skeleton representation of the human body has been proven to be effective for this task. The skeletons are presented in graphs form-like. However, the topology of a graph is not structured like Euclidean-based data. Therefore, a new set of methods to perform the convolution operation upon the skeleton graph is proposed. Our proposal is based on the Spatial Temporal-Graph Convolutional Network (ST-GCN) framework.… More
  •   Views:18       Downloads:17        Download PDF
  • Hybrid In-Vehicle Background Noise Reduction for Robust Speech Recognition: The Possibilities of Next Generation 5G Data Networks
  • Abstract This pilot study focuses on employment of hybrid LMS-ICA system for in-vehicle background noise reduction. Modern vehicles are nowadays increasingly supporting voice commands, which are one of the pillars of autonomous and SMART vehicles. Robust speaker recognition for context-aware in-vehicle applications is limited to a certain extent by in-vehicle background noise. This article presents the new concept of a hybrid system, which is implemented as a virtual instrument. The highly modular concept of the virtual car used in combination with real recordings of various driving scenarios enables effective testing of the investigated methods of in-vehicle background noise reduction. The study… More
  •   Views:16       Downloads:15        Download PDF
  • Drone-based AI/IoT Framework for Monitoring, Tracking and Fighting Pandemics
  • Abstract Since World Health Organization (WHO) has declared the Coronavirus disease (COVID-19) a global pandemic, the world has changed. All life's fields and daily habits have moved to adapt to this new situation. According to WHO, the probability of such virus pandemics in the future is high, and recommends preparing for worse situations. To this end, this work provides a framework for monitoring, tracking, and fighting COVID-19 and future pandemics. The proposed framework deploys unmanned aerial vehicles (UAVs), e.g.; quadcopter and drone, integrated with artificial intelligence (AI) and Internet of Things (IoT) to monitor and fight COVID-19. It consists of two… More
  •   Views:19       Downloads:16        Download PDF
  • Modified UNet Model for Brain Stroke Lesion Segmentation on Computed Tomography Images
  • Abstract The task of segmentation of brain regions affected by ischemic stroke is help to tackle important challenges of modern stroke imaging analysis. Unfortunately, at the moment, the models for solving this problem using machine learning methods are far from ideal. In this paper, we consider a modified 3D UNet architecture to improve the quality of stroke segmentation based on 3D computed tomography images. We use the ISLES 2018 (Ischemic Stroke Lesion Segmentation Challenge 2018) open dataset to train and test the proposed model. Interpretation of the obtained results, as well as the ideas for further experiments are included in the… More
  •   Views:19       Downloads:19        Download PDF
  • Plant Identification Using Fitness-Based Position Update in Whale Optimization Algorithm
  • Abstract Since the beginning of time, humans have relied on plants for food, energy, and medicine. Plants are recognized by leaf, flower, or fruit and linked to their suitable cluster. Classification methods are used to extract and select traits that are helpful in identifying a plant. In plant leaf image categorization, each plant is assigned a label according to its classification. The purpose of classifying plant leaf images is to enable farmers to recognize plants, leading to the management of plants in several aspects. This study aims to present a modified whale optimization algorithm and categorizes plant leaf images into classes.… More
  •   Views:13       Downloads:12        Download PDF
  • Graphene-Based RFID Tag Antenna for Vehicular Smart Border Passings
  • Abstract Globalization has opened practically every country in the globe to tourism and commerce today. In every region, the volume of vehicles traveling through border crossings has increased significantly. Smartcards and radio frequency identification (RFID) have been proposed as a new method of identifying and authenticating passengers, products, and vehicles. However, the usage of smartcards and RFID tag cards for vehicular border crossings continues to suffer security and flexibility challenges. Providing a vehicle's driver a smartcard or RFID tag card may result in theft, loss, counterfeit, imitation, or vehicle transmutation. RFID sticker tags would replace RFID tags as vehicle border passes… More
  •   Views:11       Downloads:12        Download PDF
  • E-mail Spam Classification Using Grasshopper Optimization Algorithm and Neural Networks
  • Abstract Spam has turned into a big predicament these days, due to the increase in the number of spam emails, as the recipient regularly receives piles of emails. Not only is spam wasting users’ time and bandwidth. In addition, it limits the storage space of the email box as well as the disk space. Thus, spam detection is a challenge for individuals and organizations alike. To advance spam email detection, this work proposes a new spam detection approach, using the grasshopper optimization algorithm (GOA) in training a multilayer perceptron (MLP) classifier for categorizing emails as ham and spam. Hence, MLP and… More
  •   Views:16       Downloads:13        Download PDF
  • Mobile Devices Interface Adaptivity Using Ontologies
  • Abstract Currently, many mobile devices provide various interaction styles and modes which create complexity in the usage of interfaces. The context offers the information base for the development of Adaptive user interface (AUI) frameworks to overcome the heterogeneity. For this purpose, the ontological modeling has been made for specific context and environment. This type of philosophy states to the relationship among elements (e.g., classes, relations, or capacities etc.) with understandable satisfied representation. The context mechanisms can be examined and understood by any machine or computational framework with these formal definitions expressed in Web ontology language (WOL)/Resource description frame work (RDF). The… More
  •   Views:13       Downloads:12        Download PDF
  • A New Hybrid SARFIMA-ANN Model for Tourism Forecasting
  • Abstract Many countries developed and increased greenery in their country sights to attract international tourists. This planning is now significantly contributing to their economy. The next task is to facilitate the tourists by sufficient arrangements and providing a green and clean environment; it is only possible if an upcoming number of tourists’ arrivals are accurately predicted. But accurate prediction is not easy as empirical evidence shows that the tourists’ arrival data often contains linear, nonlinear, and seasonal patterns. The traditional model, like the seasonal autoregressive fractional integrated moving average (SARFIMA), handles seasonal trends with seasonality. In contrast, the artificial neural network… More
  •   Views:15       Downloads:13        Download PDF
  • Milestones of Wireless Communication Networks and Technology Prospect of Next Generation (6G)
  • Abstract Since around 1980, a new generation of wireless technology has arisen approximately every 10 years. First-generation (1G) and second-generation (2G) began with voice and eventually introduced more and more data in third-generation (3G) and became highly popular in the fourth-generation (4G). To increase the data rate along with low latency and mass connectivity the fifth-generation (5G) networks are being installed from 2020. However, the 5G technology will not be able to fulfill the data demand at the end of this decade. Therefore, it is expected that 6G communication networks will rise, providing better services through the implementation of new enabling… More
  •   Views:15       Downloads:12        Download PDF
  • Robust Watermarking of Screen-Photography Based on JND
  • Abstract With the popularity of smartphones, it is often easy to maliciously leak important information by taking pictures of the phone. Robust watermarking that can resist screen photography can achieve the protection of information. Since the screen photo process can cause some irreversible distortion, the currently available screen photo watermarks do not consider the image content well and the visual quality is not very high. Therefore, this paper proposes a new screen-photography robust watermark. In terms of embedding region selection, the intensity-based Scale-invariant feature transform (SIFT) algorithm used for the construction of feature regions based on the density of feature points,… More
  •   Views:15       Downloads:11        Download PDF
  • Hydrodynamics and Heat Transfer Analysis of Airflow in a Sinusoidally Curved Channel
  • Abstract For heat transfer enhancement in heat exchangers, different types of channels are often tested. The performance of heat exchangers can be made better by considering geometry composed of sinusoidally curved walls. This research studies the modeling and simulation of airflow through a units long sinusoidally curved wavy channel. For the purpose, two-dimensional Navier Stokes equations along with heat equations are under consideration. To simulate the fluid flow problem, the finite element-based software COMSOL Multiphysics is used. The parametric study for Reynolds number from to and the period of vibration P from to are observed. The surface plots, streamline patterns, contours,… More
  •   Views:15       Downloads:13        Download PDF
  • Fuzzy Control Based Resource Scheduling in IoT Edge Computing
  • Abstract Edge Computing is a new technology in Internet of Things (IoT) paradigm that allows sensitive data to be sent to disperse devices quickly and without delay. Edge is identical to Fog, except its positioning in the end devices is much nearer to end-users, making it process and respond to clients in less time. Further, it aids sensor networks, real-time streaming apps, and the IoT, all of which require high-speed and dependable internet access. For such an IoT system, Resource Scheduling Process (RSP) seems to be one of the most important tasks. This paper presents a RSP for Edge Computing (EC).… More
  •   Views:16       Downloads:12        Download PDF
  • Efficient Computer Aided Diagnosis System for Hepatic Tumors Using Computed Tomography Scans
  • Abstract One of the leading causes of mortality worldwide is liver cancer. The earlier the detection of hepatic tumors, the lower the mortality rate. This paper introduces a computer-aided diagnosis system to extract hepatic tumors from computed tomography scans and classify them into malignant or benign tumors. Segmenting hepatic tumors from computed tomography scans is considered a challenging task due to the fuzziness in the liver pixel range, intensity values overlap between the liver and neighboring organs, high noise from computed tomography scanner, and large variance in tumors shapes. The proposed method consists of three main stages; liver segmentation using Fast… More
  •   Views:14       Downloads:13        Download PDF
  • Smart Bubble Sort: A Novel and Dynamic Variant of Bubble Sort Algorithm
  • Abstract In the present era, a very huge volume of data is being stored in online and offline databases. Enterprise houses, research, medical as well as healthcare organizations, and academic institutions store data in databases and their subsequent retrievals are performed for further processing. Finding the required data from a given database within the minimum possible time is one of the key factors in achieving the best possible performance of any computer-based application. If the data is already sorted, finding or searching is comparatively faster. In real-life scenarios, the data collected from different sources may not be in sorted order. Sorting… More
  •   Views:12       Downloads:12        Download PDF
  • Hybridization of CNN with LBP for Classification of Melanoma Images
  • Abstract Skin cancer (melanoma) is one of the most aggressive of the cancers and the prevalence has significantly increased due to increased exposure to ultraviolet radiation. Therefore, timely detection and management of the lesion is a critical consideration in order to improve lifestyle and reduce mortality. To this end, we have designed, implemented and analyzed a hybrid approach entailing convolutional neural networks (CNN) and local binary patterns (LBP). The experiments have been performed on publicly accessible datasets ISIC 2017, 2018 and 2019 (HAM10000) with data augmentation for in-distribution generalization. As a novel contribution, the CNN architecture is enhanced with an intelligible… More
  •   Views:15       Downloads:14        Download PDF
  • 5G Smart Mobility Management Based Fuzzy Logic Controller Unit
  • Abstract In the paper, we propose a fuzzy logic controller system to be implemented for smart mobility management in the 5G wireless communication network. Mobility management is considered as a main issue for all-IP mobile networks future generation. As a network-based mobility management protocol, Internet Engineering Task Force developed the Proxy Mobile IPv6 (PMIPv6) in order to support the mobility of IP devices, and many other results were presented to reduce latency handover and the amount of PMIPv6 signaling, but it is not enough for the application needs in real-time. The present paper describes an approach based on the IEEE 802.21… More
  •   Views:13       Downloads:12        Download PDF
  • Man Overboard Detection System Using IoT for Navigation Model
  • Abstract Security measures and contingency plans have been established in order to ensure human safety especially in the floating elements like ferry, ro-ro, catamaran, frigate, yacht that are the vehicles services for the purpose of logistic and passenger transport. In this paper, all processes in the event of Man overboard (MOB)are initiated for smart transportation. In MOB the falling person is totally dependent on the person who first saw the falling person. The main objective of this paper is to develop a solution to this significant problem. If a staff member or a passenger does not see the fall into the… More
  •   Views:16       Downloads:14        Download PDF
  • Text Encryption Using Pell Sequence and Elliptic Curves with Provable Security
  • Abstract The demand for data security schemes has increased with the significant advancement in the field of computation and communication networks. We propose a novel three-step text encryption scheme that has provable security against computation attacks such as key attack and statistical attack. The proposed scheme is based on the Pell sequence and elliptic curves, where at the first step the plain text is diffused to get a meaningless plain text by applying a cyclic shift on the symbol set. In the second step, we hide the elements of the diffused plain text from the attackers. For this purpose, we use… More
  •   Views:12       Downloads:14        Download PDF
  • Optimized Ensemble Algorithm for Predicting Metamaterial Antenna Parameters
  • Abstract Metamaterial Antenna is a subclass of antennas that makes use of metamaterial to improve performance. Metamaterial antennas can overcome the bandwidth constraint associated with tiny antennas. Machine learning is receiving a lot of interest in optimizing solutions in a variety of areas. Machine learning methods are already a significant component of ongoing research and are anticipated to play a critical role in today's technology. The accuracy of the forecast is mostly determined by the model used. The purpose of this article is to provide an optimal ensemble model for predicting the bandwidth and gain of the Metamaterial Antenna. Support Vector… More
  •   Views:13       Downloads:15        Download PDF
  • Brain Tumor Detection and Segmentation Using RCNN
  • Abstract Brain tumors are considered as most fatal cancers. To reduce the risk of death, early identification of the disease is required. One of the best available methods to evaluate brain tumors is Magnetic resonance Images (MRI). Brain tumor detection and segmentation are tough as brain tumors may vary in size, shape, and location. That makes manual detection of brain tumors by exploring MRI a tedious job for radiologists and doctors’. So an automated brain tumor detection and segmentation is required. This work suggests a Region-based Convolution Neural Network (RCNN) approach for automated brain tumor identification and segmentation using MR images,… More
  •   Views:13       Downloads:15        Download PDF
  • Perceptual Image Outpainting Assisted by Low-Level Feature Fusion and Multi-Patch Discriminator
  • Abstract Recently, deep learning-based image outpainting has made greatly notable improvements in computer vision field. However, due to the lack of fully extracting image information, the existing methods often generate unnatural and blurry outpainting results in most cases. To solve this issue, we propose a perceptual image outpainting method, which effectively takes the advantage of low-level feature fusion and multi-patch discriminator. Specifically, we first fuse the texture information in the low-level feature map of encoder, and simultaneously incorporate these aggregated features reusability with semantic (or structural) information of deep feature map such that we could utilize more sophisticated texture information to… More
  •   Views:17       Downloads:15        Download PDF
  • Security Threat and Vulnerability Assessment and Measurement in Secure Software Development
  • Abstract Security is critical to the success of software, particularly in today's fast-paced, technology-driven environment. It ensures that data, code, and services maintain their CIA (Confidentiality, Integrity, and Availability). This is only possible if security is taken into account at all stages of the SDLC (Software Development Life Cycle). Various approaches to software quality have been developed, such as CMMI (Capability maturity model integration). However, there exists no explicit solution for incorporating security into all phases of SDLC. One of the major causes of pervasive vulnerabilities is a failure to prioritize security. Even the most proactive companies use the “patch and… More
  •   Views:18       Downloads:16        Download PDF
  • Energy-Efficient Scheduling for a Cognitive IoT-Based Early Warning System
  • Abstract Flash floods are deemed the most fatal and disastrous natural hazards globally due to their prompt onset that requires a short prime time for emergency response. Cognitive Internet of things (CIoT) technologies including inherent characteristics of cognitive radio (CR) are potential candidates to develop a monitoring and early warning system (MEWS) that helps in efficiently utilizing the short response time to save lives during flash floods. However, most CIoT devices are battery-limited and thus, it reduces the lifetime of the MEWS. To tackle these problems, we propose a CIoT-based MEWS to slash the fatalities of flash floods. To extend the… More
  •   Views:14       Downloads:12        Download PDF
  • Fruits and Vegetables Freshness Categorization Using Deep Learning
  • Abstract The nutritional value of perishable food items, such as fruits and vegetables, depends on their freshness levels. The existing approaches solve a binary class problem by classifying a known fruit\vegetable class into fresh or rotten only. We propose an automated fruits and vegetables categorization approach that first recognizes the class of object in an image and then categorizes that fruit or vegetable into one of the three categories: pure-fresh, medium-fresh, and rotten. We gathered a dataset comprising of 60K images of 11 fruits and vegetables, each is further divided into three categories of freshness, using hand-held cameras. The recognition and… More
  •   Views:13       Downloads:12        Download PDF
  • Sum Rate Maximization-based Fair Power Allocation in Downlink NOMA Networks
  • Abstract Non-orthogonal multiple access (NOMA) has been seen as a promising technology for 5G communication. The performance optimization of NOMA systems depends on both power allocation (PA) and user pairing (UP). Most existing researches provide sub-optimal solutions with high computational complexity for PA problem and mainly focuses on maximizing the sum rate (capacity) without considering the fairness performance. Also, the joint optimization of PA and UP needs an exhaustive search. The main contribution of this paper is the proposing of a novel capacity maximization-based fair power allocation (CMFPA) with low-complexity in downlink NOMA. Extensive investigation and analysis of the joint impact… More
  •   Views:23       Downloads:20        Download PDF
  • Deep Learning Based Intrusion Detection in Cloud Services for Resilience Management
  • Abstract In the global scenario one of the important goals for sustainable development in industrial field is innovate new technology, and invest in building infrastructure. All the developed and developing countries focus on building resilient infrastructure and promote sustainable developments by fostering innovation. At this juncture the cloud computing has become an important information and communication technologies model influencing sustainable development of the industries in the developing countries. As part of the innovations happening in the industrial sector, a new concept termed as ‘smart manufacturing’ has emerged, which employs the benefits of emerging technologies like internet of things and cloud computing.… More
  •   Views:14       Downloads:13        Download PDF
  • Fruit Image Classification Using Deep Learning
  • Abstract Fruit classification is found to be one of the rising fields in computer and machine vision. Many deep learning-based procedures worked out so far to classify images may have some ill-posed issues. The performance of the classification scheme depends on the range of captured images, the volume of features, types of characters, choice of features from extracted features, and type of classifiers used. This paper aims to propose a novel deep learning approach consisting of Convolution Neural Network (CNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) application to classify the fruit images. Classification accuracy depends on the extracted… More
  •   Views:15       Downloads:12        Download PDF
  • Machine Learning Based Analysis of Real-Time Geographical of RS Spatio-Temporal Data
  • Abstract Flood disasters can be reliably monitored using remote sensing photos with great spatiotemporal resolution. However, satellite revisit periods and extreme weather limit the use of high spatial resolution images. As a result, this research provides a method for combining Landsat and MODIS pictures to produce high spatiotemporal imagery for flood disaster monitoring. Using the spatial and temporal adaptive reflectance fusion model (STARFM), the spatial and temporal reflectance unmixing model (STRUM), and three prominent algorithms of flexible spatiotemporal data fusion (FSDAF), Landsat fusion images are created by fusing MODIS and Landsat images. Then, to extract flood information, utilize a support vector… More
  •   Views:18       Downloads:13        Download PDF
  • Data Hiding in AMBTC Images Using Selective XOR Hiding Scheme
  • Abstract Nowadays since the Internet is ubiquitous, the frequency of data transfer through the public network is increasing. Hiding secure data in these transmitted data has emerged broad security issue, such as authentication and copyright protection. On the other hand, considering the transmission efficiency issue, image transmission usually involves image compression in Internet-based applications. To address both issues, this paper presents a data hiding scheme for the image compression method called absolute moment block truncation coding (AMBTC). First, an image is divided into non-overlapping blocks through AMBTC compression, the blocks are classified four types, namely smooth, semi-smooth, semi-complex, and complex. The… More
  •   Views:15       Downloads:13        Download PDF
  • Attention-Based Deep Learning Model for Early Detection of Parkinson's Disease
  • Abstract Parkinson's disease (PD), classified under the category of a neurological syndrome, affects the brain of a person which leads to the motor and non-motor symptoms. Among motor symptoms, one of the major disabling symptom is Freezing of Gait (FoG) that affects the daily standard of living of PD patients. Available treatments target to improve the symptoms of PD. Detection of PD at the early stages is an arduous task due to being indistinguishable from a healthy individual. This work proposed a novel attention-based model for the detection of FoG events and PD, and measuring the intensity of PD on the… More
  •   Views:17       Downloads:15        Download PDF
  • New Hybrid IoT LoRaWAN/IRC Sensors: SMART Water Metering System
  • Abstract The massive development of internet of things (IoT) technologies is gaining momentum across all areas of their possible deployment—spanning from Industry 4.0 to eHealth, smart city, agriculture or waste management. This ongoing development is further pushed forward by the gradual deployment of 5G networks. With 5G capable smart devices, it will be possible to transfer more data with shorter latency thereby resulting in exciting new use cases such as Massive IoT. Massive-IoT (low-power wide area network-LPWAN) enables improved network coverage, long device operational lifetime and a high density of connections. Despite all the advantages of massive-IoT technology, there are certain… More
  •   Views:19       Downloads:22        Download PDF
  • Location Prediction for Improved Human Safety at Complex Environments
  • Abstract In underground operation, primary consideration is safety. In recent decades, for minimizing accident and for preventing major economic losses and casualties, wireless sensors are used by various large mineral countries through early warning. The Improved DV-Hop Localization Algorithm (IDVHLA) is used in existing works for doing this. However, accurate anchor node detection is impossible in existing works with the malicious nodes presence, where there won't be any accurate sharing of anchor node's location information. In case of emergency situation, faster communication is a highly complex one. A technique called Modified Distance Vector Hop based Multipath Routing Protocol (MDVHMRP) is introduced… More
  •   Views:16       Downloads:15        Download PDF
  • Automated Facial Expression Recognition and Age Estimation Using Deep Learning
  • Abstract With the advancement of computer vision techniques in surveillance systems, the need for more proficient, intelligent, and sustainable facial expressions and age recognition is necessary. The main purpose of this study is to develop accurate facial expressions and an age recognition system that is capable of error-free recognition of human expression and age in both indoor and outdoor environments. The proposed system first takes an input image pre-process it and then detects faces in the entire image. After that landmarks localization helps in the formation of synthetic face mask prediction. A novel set of features are extracted and passed to… More
  •   Views:14       Downloads:13        Download PDF
  • Digital Watermarking Scheme for Securing Textual Database Using Histogram Shifting Model
  • Abstract Information security is one of the most important methods of protecting the confidentiality and privacy of internet users. The greater the volume of data, the more the need to increase the security methods for protecting data from intruders. This task can be challenging for researchers in terms of managing enormous data and maintaining their safety and effectiveness. Protection of digital content is a major issue in maintaining the privacy and secrecy of data. Toward this end, digital watermarking is based on the concept of information security through the insertion and detection of an embedded watermark in an efficient manner. Recent… More
  •   Views:13       Downloads:11        Download PDF
  • Lightweight Direct Acyclic Graph Blockchain for Enhancing Resource-Constrained IoT Environment
  • Abstract Blockchain technology is regarded as the emergent security solution for many applications related to the Internet of Things (IoT). In concept, blockchain has a linear structure that grows with the number of transactions entered. This growth in size is the main obstacle to the blockchain, which makes it unsuitable for resource-constrained IoT environments. Moreover, conventional consensus algorithms such as PoW, PoS are very computationally heavy. This paper solves these problems by introducing a new lightweight blockchain structure and lightweight consensus algorithm. The Multi-Zone Direct Acyclic Graph (DAG) Blockchain (Multizone-DAG-Blockchain) framework is proposed for the fog-based IoT environment. In this context,… More
  •   Views:19       Downloads:18        Download PDF
  • Examination of Pine Wilt Epidemic Model through Efficient Algorithm
  • Abstract Pine wilt is a dramatic disease that kills infected trees within a few weeks to a few months. The cause is the pathogen Pinewood Nematode. Most plant-parasitic nematodes are attached to plant roots, but pinewood nematodes are found in the tops of trees. Nematodes kill the tree by feeding the cells around the resin ducts. The modeling of a pine wilt disease is based on six compartments, including three for plants (susceptible trees, exposed trees, and infected trees) and the other for the beetles (susceptible beetles, exposed beetles, and infected beetles). The deterministic modeling, along with subpopulations, is based on… More
  •   Views:13       Downloads:15        Download PDF
  • Metaheuristic Based Data Gathering Scheme for Clustered UAVs in 6G Communication Network
  • Abstract The sixth-generation (6G) wireless communication networks are anticipated in integrating aerial, terrestrial, and maritime communication into a robust system to accomplish trustworthy, quick, and low latency needs. It enables to achieve maximum throughput and delay for several applications. Besides, the evolution of 6G leads to the design of unmanned aerial vehicles (UAVs) in providing inexpensive and effective solutions in various application areas such as healthcare, environment monitoring, and so on. In the UAV network, effective data collection with restricted energy capacity poses a major issue to achieving high quality network communication. It can be addressed by the use of clustering… More
  •   Views:18       Downloads:18        Download PDF
  • Contrast Correction Using Hybrid Statistical Enhancement on Weld Defect Images
  • Abstract Luminosity and contrast variation problems are among the most challenging tasks in the image processing field, significantly improving image quality. Enhancement is implemented by adjusting the dark or bright intensity to improve the quality of the images and increase the segmentation performance. Recently, numerous methods had been proposed to normalise the luminosity and contrast variation. A new approach based on a direct technique using statistical data known as Hybrid Statistical Enhancement (HSE) is presented in this study. The HSE method uses the mean and standard deviation of a local and global neighbourhood and classified the pixel into three groups; the… More
  •   Views:13       Downloads:11        Download PDF
  • Decision Support System for Diagnosis of Irregular Fovea
  • Abstract Detection of abnormalities in human eye is one of the well-established research areas of Machine Learning. Deep Learning techniques are widely used for the diagnosis of Retinal Diseases (RD). Fovea is one of the significant parts of retina which would be prevented before the involvement of Perforated Blood Vessels (PBV). Retinopathy Images (RI) contains sufficient information to classify structural changes incurred upon PBV but Macular Features (MF) and Fovea Features (FF) are very difficult to detect because features of MF and FF could be found with Similar Color Movements (SCM) with minor variations. This paper presents novel method for the… More
  •   Views:13       Downloads:11        Download PDF
  • Machine Learning-based Optimal Framework for Internet of Things Networks
  • Abstract Deep neural networks (DNN) are widely employed in a wide range of intelligent applications, including image and video recognition. However, due to the enormous amount of computations required by DNN. Therefore, performing DNN inference tasks locally is problematic for resource-constrained Internet of Things (IoT) devices. Existing cloud approaches are sensitive to problems like erratic communication delays and unreliable remote server performance. The utilization of IoT device collaboration to create distributed and scalable DNN task inference is a very promising strategy. The existing research, on the other hand, exclusively looks at the static split method in the scenario of homogeneous IoT… More
  •   Views:18       Downloads:19        Download PDF
  • Machine Learning-based Stable P2P IPTV Overlay
  • Abstract Live video streaming is one of the newly emerged services over the Internet that has attracted immense interest of the service providers. Since Internet was not designed for such services during its inception, such a service poses some serious challenges including cost and scalability. Peer-to-Peer (P2P) Internet Protocol Television (IPTV) is an application-level distributed paradigm to offer live video contents. In terms of ease of deployment, it has emerged as a serious alternative to client server, Content Delivery Network (CDN) and IP multicast solutions. Nevertheless, P2P approach has struggled to provide the desired streaming quality due to a number of… More
  •   Views:19       Downloads:17        Download PDF
  • An Efficient Machine Learning Based Precoding Algorithm for Millimeter-Wave Massive MIMO
  • Abstract Millimeter wave communication works in the 30–300 GHz frequency range, and can obtain a very high bandwidth, which greatly improves the transmission rate of the communication system and becomes one of the key technologies of fifth-generation (5G). The smaller wavelength of the millimeter wave makes it possible to assemble a large number of antennas in a small aperture. The resulting array gain can compensate for the path loss of the millimeter wave. Utilizing this feature, the millimeter wave massive multiple-input multiple-output (MIMO) system uses a large antenna array at the base station. It enables the transmission of multiple data streams,… More
  •   Views:12       Downloads:12        Download PDF
  • A BPR-CNN Based Hand Motion Classifier Using Electric Field Sensors
  • Abstract In this paper, we propose a BPR-CNN (Biometric Pattern Recognition-Convolution Neural Network) classifier for hand motion classification as well as a dynamic threshold algorithm for motion signal detection and extraction by EF (Electric Field) sensors. Currently, an EF sensor or EPS (Electric Potential Sensor) system is attracting attention as a next-generation motion sensing technology due to low computation and price, high sensitivity and recognition speed compared to other sensor systems. However, it remains as a challenging problem to accurately detect and locate the authentic motion signal frame automatically in real-time when sensing body-motions such as hand motion, due to the… More
  •   Views:15       Downloads:13        Download PDF
  • Twisted Pair Cable Fault Diagnosis via Random Forest Machine Learning
  • Abstract Applying the fault diagnosis techniques to twisted pair copper cable is beneficial to improve the stability and reliability of internet access in Digital Subscriber Line (DSL) Access Network System. The network performance depends on the occurrence of cable fault along the copper cable. Currently, most of the telecommunication providers monitor the network performance degradation hence troubleshoot the present of the fault by using commercial test gear on-site, which may be resolved using data analytics and machine learning algorithm. This paper presents a fault diagnosis method for twisted pair cable fault detection based on knowledge-based and data-driven machine learning methods. The… More
  •   Views:13       Downloads:16        Download PDF
  • Mathematical Modelling of Quantum Kernel Method for Biomedical Data Analysis
  • Abstract This study presents a novel method to detect the medical application based on Quantum Computing (QC) and a few Machine Learning (ML) systems. QC has a primary advantage i.e., it uses the impact of quantum parallelism to provide the consequences of prime factorization issue in a matter of seconds. So, this model is suggested for medical application only by recent researchers. A novel strategy i.e., Quantum Kernel Method (QKM) is proposed in this paper for data prediction. In this QKM process, Linear Tunicate Swarm Algorithm (LTSA), the optimization technique is used to calculate the loss function initially and is aimed… More
  •   Views:16       Downloads:16        Download PDF
  • IEEE802.11 Access Point's Service Set Identifier (SSID) for Localization and Tracking
  • Abstract IEEE802.11, known as WiFi has proliferated in the last decade. It can be found in smartphones, laptops, smart TVs and surveillance cameras. This popularity has revealed many issues in health, data privacy and security. In this work, a WiFi measurement study has been conducted in Amman, the capital city of Jordan. An Android App has been written to harvest WiFi information of the transmitted frames of any surrounding Access points (APs). More than 240,000 APs information has been harvested in this work. The harvested data have been analyzed to find statistics of WiFi devices in this city. Moreover, three power… More
  •   Views:12       Downloads:12        Download PDF
  • Fusion Based Tongue Color Image Analysis Model for Biomedical Applications
  • Abstract Tongue diagnosis is a novel and non-invasive approach commonly employed to carry out the supplementary diagnosis over the globe. Recently, several deep learning (DL) based tongue color image analysis models have existed in the literature for the effective detection of diseases. This paper presents a fusion of handcrafted with deep features based tongue color image analysis (FHDF-TCIA) technique to biomedical applications. The proposed FDHF-TCIA technique aims to investigate the tongue images using fusion model, and thereby determines the existence of disease. Primarily, the FHDF-TCIA technique comprises Gaussian filtering based preprocessing to eradicate the noise. The proposed FHDF-TCIA model encompasses a… More
  •   Views:17       Downloads:16        Download PDF
  • A New Handover Management Model for Two-Tier 5G Mobile Networks
  • Abstract There has been an exponential rise in mobile data traffic in recent times due to the increasing popularity of portable devices like tablets, smartphones, and laptops. The rapid rise in the use of these portable devices has put extreme stress on the network service providers while forcing telecommunication engineers to look for innovative solutions to meet the increased demand. One solution to the problem is the emergence of fifth-generation (5G) wireless communication, which can address the challenges by offering very broad wireless area capacity and potential cut-power consumption. The application of small cells is the fundamental mechanism for the 5G… More
  •   Views:17       Downloads:16        Download PDF
  • Automatic Speaker Recognition Using Mel-Frequency Cepstral Coefficients Through Machine Learning
  • Abstract Automatic speaker recognition (ASR) systems are the field of Human-machine interaction and scientists have been using feature extraction and feature matching methods to analyze and synthesize these signals. One of the most commonly used methods for feature extraction is Mel Frequency Cepstral Coefficients (MFCCs). Recent researches show that MFCCs are successful in processing the voice signal with high accuracies. MFCCs represents a sequence of voice signal-specific features. This experimental analysis is proposed to distinguish Turkish speakers by extracting the MFCCs from the speech recordings. Since the human perception of sound is not linear, after the filterbank step in the MFCC… More
  •   Views:11       Downloads:15        Download PDF
  • COCP: Coupling Parameters Content Placement Strategy for In-Network Caching-Based Content-Centric Networking
  • Abstract On-path caching is the prominent module in Content-Centric Networking (CCN), equipped with the capability to handle the demands of future networks such as the Internet of Things (IoT) and vehicular networks. The main focus of the CCN caching module is data dissemination within the network. Most of the existing strategies of in-network caching in CCN store the content at the maximum number of routers along the downloading path. Consequently, content redundancy in the network increases significantly, whereas the cache hit ratio and network performance decrease due to the unnecessary utilization of limited cache storage. Moreover, content redundancy adversely affects the… More
  •   Views:13       Downloads:16        Download PDF
  • Annealing Harmony Search Algorithm to Solve the Nurse Rostering Problem
  • Abstract A real-life problem is the rostering of nurses at hospitals. It is a famous nondeterministic, polynomial time (NP) -hard combinatorial optimization problem. Handling the real-world nurse rostering problem (NRP) constraints in distributing workload equally between available nurses is still a difficult task to achieve. The international shortage of nurses, in addition to the spread of COVID-19, has made it more difficult to provide convenient rosters for nurses. Based on the literature, heuristic-based methods are the most commonly used methods to solve the NRP due to its computational complexity, especially for large rosters. Heuristic-based algorithms in general have problems striking the… More
  •   Views:19       Downloads:17        Download PDF
  • LCF: A Deep Learning-Based Lightweight CSI Feedback Scheme for MIMO Networks
  • Abstract Recently, as deep learning technologies have received much attention for their great potential in extracting the principal components of data, there have been many efforts to apply them to the Channel State Information (CSI) feedback overhead problem, which can significantly limit Multi-Input Multi-Output (MIMO) beamforming gains. Unfortunately, since most compression models can quickly become outdated due to channel variation, timely model updates are essential for reflecting the current channel conditions, resulting in frequent additional transmissions for model sharing between transceivers. In particular, the heavy network models employed by most previous studies to achieve high compression gains exacerbate the impact of… More
  •   Views:17       Downloads:14        Download PDF
  • Sparse Crowd Flow Analysis of Tawaaf of Kaaba During the COVID-19 Pandemic
  • Abstract The advent of the COVID-19 pandemic has adversely affected the entire world and has put forth high demand for techniques that remotely manage crowd-related tasks. Video surveillance and crowd management using video analysis techniques have significantly impacted today's research, and numerous applications have been developed in this domain. This research proposed an anomaly detection technique applied to Umrah videos in Kaaba during the COVID-19 pandemic through sparse crowd analysis. Managing the Kaaba rituals is crucial since the crowd gathers from around the world and requires proper analysis during these days of the pandemic. The Umrah videos are analyzed, and a… More
  •   Views:13       Downloads:15        Download PDF
  • Sentiment Analysis in Social Media for Competitive Environment Using Content Analysis
  • Abstract Education sector has witnessed several changes in the recent past. These changes have forced private universities into fierce competition with each other to get more students enrolled. This competition has resulted in the adoption of marketing practices by private universities similar to commercial brands. To get competitive gain, universities must observe and examine the students’ feedback on their own social media sites along with the social media sites of their competitors. This study presents a novel framework which integrates numerous analytical approaches including statistical analysis, sentiment analysis, and text mining to accomplish a competitive analysis of social media sites of… More
  •   Views:14       Downloads:12        Download PDF
  • Enhancing Task Assignment in Crowdsensing Systems Based on Sensing Intervals and Location
  • Abstract The popularity of mobile devices with sensors is captivating the attention of researchers to modern techniques, such as the internet of things (IoT) and mobile crowdsensing (MCS). The core concept behind MCS is to use the power of mobile sensors to accomplish a difficult task collaboratively, with each mobile user completing much simpler micro-tasks. This paper discusses the task assignment problem in mobile crowdsensing, which is dependent on sensing time and path planning with the constraints of participant travel distance budgets and sensing time intervals. The goal is to minimize aggregate sensing time for mobile users, which reduces energy consumption… More
  •   Views:8       Downloads:12        Download PDF
  • Enhancing Parkinson's Disease Prediction Using Machine Learning and Feature Selection Methods
  • Abstract Several millions of people suffer from Parkinson's disease globally. Parkinson's affects about 1% of people over 60 and its symptoms increase with age. The voice may be affected and patients experience abnormalities in speech that might not be noticed by listeners, but which could be analyzed using recorded speech signals. With the huge advancements of technology, the medical data has increased dramatically, and therefore, there is a need to apply data mining and machine learning methods to extract new knowledge from this data. Several classification methods were used to analyze medical data sets and diagnostic problems, such as Parkinson's Disease… More
  •   Views:13       Downloads:15        Download PDF
  • Hybrid Whale Optimization Algorithm for Resource Optimization in Cloud E-Healthcare Applications
  • Abstract In the next generation of computing environment e-health care services depend on cloud services. The Cloud computing environment provides a real-time computing environment for e-health care applications. But these services generate a huge number of computational tasks, real-time computing and comes with a deadline, so conventional cloud optimization models cannot fulfil the task in the least time and within the deadline. To overcome this issue many resource optimization meta-heuristic models are been proposed but these models cannot find a global best solution to complete the task in the least time and manage utilization with the least simulation time. In order… More
  •   Views:12       Downloads:14        Download PDF
  • FSpot: Fast and Efficient Video Encoding Workloads Over Amazon Spot Instances
  • Abstract HTTP Adaptive Streaming (HAS) of video content is becoming an undivided part of the Internet and accounts for most of today's network traffic. Video compression technology plays a vital role in efficiently utilizing network channels, but encoding videos into multiple representations with selected encoding parameters is a significant challenge. However, video encoding is a computationally intensive and time-consuming operation that requires high-performance resources provided by on-premise infrastructures or public clouds. In turn, the public clouds, such as Amazon elastic compute cloud (EC2), provide hundreds of computing instances optimized for different purposes and clients’ budgets. Thus, there is a need for… More
  •   Views:14       Downloads:11        Download PDF
  • Deep Reinforcement Learning Enabled Smart City Recycling Waste Object Classification
  • Abstract The Smart City concept revolves around gathering real time data from citizen, personal vehicle, public transports, building, and other urban infrastructures like power grid and waste disposal system. The understandings obtained from the data can assist municipal authorities handle assets and services effectually. At the same time, the massive increase in environmental pollution and degradation leads to ecological imbalance is a hot research topic. Besides, the progressive development of smart cities over the globe requires the design of intelligent waste management systems to properly categorize the waste depending upon the nature of biodegradability. Few of the commonly available wastes are… More
  •   Views:15       Downloads:16        Download PDF
  • Deep Learning-based Wireless Signal Classification in the IoT Environment
  • Abstract With the development of the Internet of Things (IoT), diverse wireless devices are increasing rapidly. Those devices have different wireless interfaces that generate incompatible wireless signals. Each signal has its own physical characteristics with signal modulation and demodulation scheme. When there exist different wireless devices, they can suffer from severe Cross-Technology Interferences (CTI). To reduce the communication overhead due to the CTI in the real IoT environment, a central coordinator can be able to detect and identify wireless signals existing in the same communication areas. This paper investigates how to classify various radio signals using Convolutional Neural Networks (CNN), Long… More
  •   Views:19       Downloads:16        Download PDF
  • Fake News Classification Using a Fuzzy Convolutional Recurrent Neural Network
  • Abstract In recent years, social media platforms have gained immense popularity. As a result, there has been a tremendous increase in content on social media platforms. This content can be related to an individual's sentiments, thoughts, stories, advertisements, and news, among many other content types. With the recent increase in online content, the importance of identifying fake and real news has increased. Although, there is a lot of work present to detect fake news, a study on Fuzzy CRNN was not explored into this direction. In this work, a system is designed to classify fake and real news using fuzzy logic.… More
  •   Views:18       Downloads:14        Download PDF
  • Optimized Deep Learning Model for Colorectal Cancer Detection and Classification Model
  • Abstract The recent developments in biological and information technologies have resulted in the generation of massive quantities of data it speeds up the process of knowledge discovery from biological systems. Due to the advancements of medical imaging in healthcare decision making, significant attention has been paid by the computer vision and deep learning (DL) models. At the same time, the detection and classification of colorectal cancer (CC) become essential to reduce the severity of the disease at an earlier stage. The existing methods are commonly based on the combination of textual features to examine the classifier results or machine learning (ML)… More
  •   Views:16       Downloads:15        Download PDF
  • Elite Opposition Based Metaheuristic Framework for Load Balancing in LTE Network
  • Abstract In present scenario of wireless communications, Long Term Evolution (LTE) based network technology is evolved and provides consistent data delivery with high speed and minimal delay through mobile devices. The traffic management and effective utilization of network resources are the key factors of LTE models. Moreover, there are some major issues in LTE that are to be considered are effective load scheduling and traffic management. Through LTE is a depraved technology, it is been suffering from these issues. On addressing that, this paper develops an Elite Opposition based Spider Monkey Optimization Framework for Efficient Load Balancing (SMO-ELB). In this model,… More
  •   Views:16       Downloads:16        Download PDF
  • Detection of Osteoarthritis Based on EHO Thresholding
  • Abstract Knee Osteoarthritis (OA) is a joint disease that is commonly observed in people around the world. Osteoarthritis commonly affects patients who are obese and those above the age of 60. A valid knee image was generated by Computed Tomography (CT). In this work, efficient segmentation of CT images using Elephant Herding Optimization (EHO) optimization is implemented. The initial stage employs, the CT image normalization and the normalized image is incited to image enhancement through histogram correlation. Consequently, the enhanced image is segmented by utilizing Niblack and Bernsen algorithm. The (EHO) optimized outcome is evaluated in two steps. The initial step… More
  •   Views:12       Downloads:13        Download PDF
  • Automated Multi-Document Biomedical Text Summarization Using Deep Learning Model
  • Abstract Due to the advanced developments of the Internet and information technologies, a massive quantity of electronic data in the biomedical sector has been exponentially increased. To handle the huge amount of biomedical data, automated multi-document biomedical text summarization becomes an effective and robust approach of accessing the increased amount of technical and medical literature in the biomedical sector through the summarization of multiple source documents by retaining the significantly informative data. So, multi-document biomedical text summarization acts as a vital role to alleviate the issue of accessing precise and updated information. This paper presents a Deep Learning based Attention Long… More
  •   Views:14       Downloads:14        Download PDF
  • Double-E-Triple-H-Shaped NRI-Metamaterial for Dual-Band Microwave Sensing Applications
  • Abstract This paper presents a new Double-E-Triple-H-Shaped NRI (negative refractive index) metamaterial (MM) for dual-band microwave sensing applications. Here, a horizontal H-shaped metal structure is enclosed by two face-to-face E-shaped metal structures. This double-E-H-shaped design is also encased by two vertical H-shaped structures along with some copper links. Thus, the Double-E-Triple-H-Shaped configuration is developed. Two popular substrate materials of Rogers RO 3010 and FR-4 were adopted for analyzing the characteristics of the unit cell. The proposed structure exhibits transmission resonance inside the S-band with NRI and ENG (Epsilon Negative) metamaterial properties, and inside the C-band with ENG and MNG (Mu Negative)… More
  •   Views:15       Downloads:12        Download PDF
  • Hybrid Ensemble-Learning Approach for Renewable Energy Resources Evaluation in Algeria
  • Abstract In order to achieve a highly accurate estimation of solar energy resource potential, a novel hybrid ensemble-learning approach, hybridizing Advanced Squirrel-Search Optimization Algorithm (ASSOA) and support vector regression, is utilized to estimate the hourly tilted solar irradiation for selected arid regions in Algeria. Long-term measured meteorological data, including mean-air temperature, relative humidity, wind speed, alongside global horizontal irradiation and extra-terrestrial horizontal irradiance, were obtained for the two cities of Tamanrasset-and-Adrar for two years. Five computational algorithms were considered and analyzed for the suitability of estimation. Further two new algorithms, namely Average Ensemble and Ensemble using support vector regression were developed… More
  •   Views:14       Downloads:12        Download PDF
  • Quantum Particle Swarm Optimization Based Convolutional Neural Network for Handwritten Script Recognition
  • Abstract Even though several advances have been made in recent years, handwritten script recognition is still a challenging task in the pattern recognition domain. This field has gained much interest lately due to its diverse application potentials. Nowadays, different methods are available for automatic script recognition. Among most of the reported script recognition techniques, deep neural networks have achieved impressive results and outperformed the classical machine learning algorithms. However, the process of designing such networks right from scratch intuitively appears to incur a significant amount of trial and error, which renders them unfeasible. This approach often requires manual intervention with domain… More
  •   Views:18       Downloads:16        Download PDF
  • Optimization Model in Manufacturing Scheduling for the Garment Industry
  • Abstract The garment industry in Vietnam is one of the country's strongest industries in the world. However, the production process still encounters problems regarding scheduling that does not equate to an optimal process. The paper introduces a production scheduling solution that resolves the potential delays and lateness that hinders the production process using integer programming and order allocation with a make-to-order manufacturing viewpoint. A number of constraints were considered in the model and is applied to a real case study of a factory in order to view how the tardiness and lateness would be affected which resulted in optimizing the scheduling… More
  •   Views:20       Downloads:17        Download PDF
  • Robust Authentication and Session Key Agreement Protocol for Satellite Communications
  • Abstract Satellite networks are recognized as the most essential communication infrastructures in the world today, which complement land networks and provide valuable services for their users. Extensive coverage and service stability of these networks have increased their popularity. Since eavesdropping and active intrusion in satellite communications are much easier than in terrestrial networks, securing satellite communications is vital. So far, several protocols have been proposed for authentication and key exchange of satellite communications, but none of them fully meet the security requirements. In this paper, we examine one of these protocols and identify its security vulnerabilities. Moreover, we propose a robust… More
  •   Views:12       Downloads:12        Download PDF
  • Emotion Based Signal Enhancement Through Multisensory Integration Using Machine Learning
  • Abstract Progress in understanding multisensory integration in human have suggested researchers that the integration may result into the enhancement or depression of incoming signals. It is evident based on different psychological and behavioral experiments that stimuli coming from different perceptual modalities at the same time or from the same place, the signal having more strength under the influence of emotions effects the response accordingly. Current research in multisensory integration has not studied the effect of emotions despite its significance and natural influence in multisensory enhancement or depression. Therefore, there is a need to integrate the emotional state of the agent with… More
  •   Views:14       Downloads:12        Download PDF
  • PNN-SVM Approach of Ti-Based Powder’s Properties Evaluation for Biomedical Implants Production
  • Abstract The advent of additive technologies has provided a significant breakthrough in the production of medical implants. It has reduced costs, increased productivity and accuracy of the implant manufacturing process. However, there are problems associated with assessing defects in the microstructure, mechanical and technological properties of alloys, both during their production by powder metallurgy and in the process of 3D printing. Thus traditional research methods of alloys properties demand considerable human, material, and time resources. At the same time, artificial intelligence tools create opportunities for intelligent evaluation of the conformity for the microstructure, phase composition, and properties of titanium powder’s alloys.… More
  •   Views:13       Downloads:12        Download PDF
  • DNA Sequence Analysis for Brain Disorder Using Deep Learning and Secure Storage
  • Abstract Analysis of brain disorder in the neuroimaging of Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and Computed Tomography (CT) needs to understand the functionalities of the brain and it has been performed using traditional methods. Deep learning algorithms have also been applied in genomics data processing. The brain disorder diseases of Alzheimer, Schizophrenia, and Parkinson are analyzed in this work. The main issue in the traditional algorithm is the improper detection of disorders in the neuroimaging data. This paper presents a deep learning algorithm for the classification of brain disorder using Deep Belief Network (DBN) and securely storing the… More
  •   Views:11       Downloads:11        Download PDF
  • An Efficient HW/SW Design for Text Extraction from Complex Color Image
  • Abstract In the context of constructing an embedded system to help visually impaired people to interpret text, in this paper, an efficient High-level synthesis (HLS) Hardware/Software (HW/SW) design for text extraction using the Gamma Correction Method (GCM) is proposed. Indeed, the GCM is a common method used to extract text from a complex color image and video. The purpose of this work is to study the complexity of the GCM method on Xilinx ZCU102 FPGA board and to propose a HW implementation as Intellectual Property (IP) block of the critical blocks in this method using HLS flow with taking account the… More
  •   Views:16       Downloads:14        Download PDF
  • Design of Intelligent Alzheimer Disease Diagnosis Model on CIoT Environment
  • Abstract Presently, cognitive Internet of Things (CIoT) with cloud computing (CC) enabled intelligent healthcare models are developed, which enables communication with intelligent devices, sensor modules, and other stakeholders in the healthcare sector to avail effective decision making. On the other hand, Alzheimer disease (AD) is an advanced and degenerative illness which injures the brain cells, and its earlier detection is necessary for suitable interference by healthcare professional. In this aspect, this paper presents a new Oriented Features from Accelerated Segment Test (FAST) with Rotated Binary Robust Independent Elementary Features (BRIEF) Detector (ORB) with optimal artificial neural network (ORB-OANN) model for AD diagnosis… More
  •   Views:13       Downloads:14        Download PDF
  • AMDnet: An Academic Misconduct Detection Method for Authors’ Behaviors
  • Abstract In recent years, academic misconduct has been frequently exposed by the media, with serious impacts on the academic community. Current research on academic misconduct focuses mainly on detecting plagiarism in article content through the application of character-based and non-text element detection techniques over the entirety of a manuscript. For the most part, these techniques can only detect cases of textual plagiarism, which means that potential culprits can easily avoid discovery through clever editing and alterations of text content. In this paper, we propose an academic misconduct detection method based on scholars’ submission behaviors. The model can effectively capture the atypical… More
  •   Views:12       Downloads:14        Download PDF
  • Sustainable-Security Assessment Through a Multi Perspective Benchmarking Framework
  • Abstract The current cyber-attack environment has put even the most protected systems at risk as the hackers are now modifying technologies to exploit even the tiniest of weaknesses and infiltrate networks. In this situation, it's critical to design and construct software that is both secure and long-lasting. While security is the most well-defined aspect of health information software systems, it is equally significant to prioritise sustainability because any health information software system will be more effective if it provides both security and sustainability to the customers at the same time. In this league, it is crucial to determine those characteristics in… More
  •   Views:21       Downloads:14        Download PDF
  • Reinforced CNN Forensic Discriminator to Detect Document Forgery by DCGAN
  • Abstract Recently, the technology of digital image forgery based on a generative adversarial network (GAN) has considerably improved to the extent that it is difficult to distinguish it from the original image with the naked eye by compositing and editing a person's face or a specific part with the original image. Thus, much attention has been paid to digital image forgery as a social issue. Further, document forgery through GANs can completely change the meaning and context in a document, and it is difficult to identify whether the document is forged or not, which is dangerous. Nonetheless, few studies have been… More
  •   Views:22       Downloads:18        Download PDF
  • An Optimized Convolution Neural Network Architecture for Paddy Disease Classification
  • Abstract Plant disease classification based on digital pictures is challenging. Machine learning approaches and plant image categorization technologies such as deep learning have been utilized to recognize, identify, and diagnose plant diseases in the previous decade. Increasing the yield quantity and quality of rice forming is an important cause for the paddy production countries. However, some diseases that are blocking the improvement in paddy production are considered as an ominous threat. Convolution Neural Network (CNN) has shown a remarkable performance in solving the early detection of paddy leaf diseases based on its images in the fast-growing era of science and technology.… More
  •   Views:14       Downloads:13        Download PDF
  • Low-Cost Flexible Graphite Monopole Patch Antenna for Wireless Communication Applications
  • Abstract This research investigates a monopole patch antenna for Wi-Fi applications at 2.45 and 5.2 GHz, and WiMax at 3.5 GHz. A low-cost and flexible graphite sheet with good conductivity, base on graphite conductive powder and glue is used to create a radiator patch and ground plane. Instead of commercially available conductive inks or graphite sheets, we use our self-produced graphite liquid to create the graphite sheet because it is easy to produce and inexpensive. The antenna structure is formed using a low-cost and easy hand-screen printing approach that involved placing graphite liquid on a bendable polyester substrate. This research focuses… More
  •   Views:18       Downloads:20        Download PDF
  • A Hybrid Meta-Classifier of Fuzzy Clustering and Logistic Regression for Diabetes Prediction
  • Abstract Diabetes is a chronic health condition that impairs the body's ability to convert food to energy, recognized by persistently high levels of blood glucose. Undiagnosed diabetes can cause many complications, including retinopathy, nephropathy, neuropathy, and other vascular disorders. Machine learning methods can be very useful for disease identification, prediction, and treatment. This paper proposes a new ensemble learning approach for type 2 diabetes prediction based on a hybrid meta-classifier of fuzzy clustering and logistic regression. The proposed approach consists of two levels. First, a base-learner comprising six machine learning algorithms is utilized for predicting diabetes. Second, a hybrid meta-learner that… More
  •   Views:11       Downloads:14        Download PDF
  • Estimator-Based GPS Attitude and Angular Velocity Determination
  • Abstract In this paper, the estimator-based Global Positioning System (GPS) attitude and angular velocity determination is presented. Outputs of the attitude estimator include the attitude angles and attitude rates or body angular velocities, depending on the design of estimator. Traditionally as a position, velocity and time sensor, the GPS also offers a free attitude-determination interferometer. GPS research and applications to the field of attitude determination using carrier phase or Doppler measurement has been extensively conducted. The raw attitude solution using the interferometry technique based on the least-squares approach is inherently noisy. The estimator such as the Kalman filter (KF) or extended… More
  •   Views:29       Downloads:15        Download PDF
  • A Provably Secure and Efficient Remote Password Authentication Scheme Using Smart Cards
  • Abstract Communication technology has advanced dramatically amid the 21st century, increasing the security risk in safeguarding sensitive information. The remote password authentication (RPA) scheme is the simplest cryptosystem that serves as the first line of defence against unauthorised entity attacks. Although the literature contains numerous RPA schemes, to the best of the authors’ knowledge, only few schemes based on the integer factorisation problem (IFP) and the discrete logarithm problem (DLP) that provided a provision for session key agreement to ensure proper mutual authentication. Furthermore, none of the previous schemes provided formal security proof using the random oracle model. Therefore, this study… More
  •   Views:11       Downloads:12        Download PDF
  • Optimal Resource Allocation in Fog Computing for Healthcare Applications
  • Abstract In recent years, the significant growth in the Internet of Things (IoT) technology has brought a lot of attention to information and communication industry. Various IoT paradigms like the Internet of Vehicle Things (IoVT) and the Internet of Health Things (IoHT) create massive volumes of data every day which consume a lot of bandwidth and storage. However, to process such large volumes of data, the existing cloud computing platforms offer limited resources due to their distance from IoT devices. Consequently, cloud-computing systems produce intolerable latency problems for latency-sensitive real-time applications. Therefore, a new paradigm called fog computing makes use of… More
  •   Views:11       Downloads:11        Download PDF
  • Accurate Location Estimation of Smart Dusts Using Machine Learning
  • Abstract Traditional wireless sensor networks (WSNs) are not suitable for rough terrains that are difficult or impossible to access by humans. Smart dust is a technology that works with the combination of many tiny sensors which is highly useful for obtaining remote sensing information from rough terrains. The tiny sensors are sprinkled in large numbers on rough terrains using airborne distribution through drones or aircraft without manually setting their locations. Although it is clear that a number of remote sensing applications can benefit from this technology, but the small size of smart dust fundamentally restricts the integration of advanced hardware on… More
  •   Views:21       Downloads:17        Download PDF
  • Hybrid Energy Storage to Control and Optimize Electric Propulsion Systems
  • Abstract Today, ship development has concentrated on electrifying ships in commercial and military applications to improve efficiency, support high-power missile systems and reduce emissions. However, the electric propulsion of the shipboard system experiences torque fluctuation, thrust, and power due to the rotation of the propeller shaft and the motion of waves. In order to meet these challenges, a new solution is needed. This paper explores hybrid energy management systems using the battery and ultracapacitor to control and optimize the electric propulsion system. The battery type and ultracapacitor are ZEBRA and MAXWELL, respectively. The 3-, 4-and 5-blade propellers are considered to produce… More
  •   Views:19       Downloads:19        Download PDF
  • Content Feature Extraction-based Hybrid Recommendation for Mobile Application Services
  • Abstract The number of mobile application services is showing an explosive growth trend, which makes it difficult for users to determine which ones are of interest. Especially, the new mobile application services are emerge continuously, most of them have not be rated when they need to be recommended to users. This is the typical problem of cold start in the field of collaborative filtering recommendation. This problem may makes it difficult for users to locate and acquire the services that they actually want, and the accuracy and novelty of service recommendations are also difficult to satisfy users. To solve this problem,… More
  •   Views:14       Downloads:13        Download PDF
  • IoMT Enabled Melanoma Detection Using Improved Region Growing Lesion Boundary Extraction
  • Abstract The Internet of Medical Things (IoMT) and cloud-based healthcare applications, services are beneficial for better decision-making in recent years. Melanoma is a deadly cancer with a higher mortality rate than other skin cancer types such as basal cell, squamous cell, and Merkel cell. However, detection and treatment at an early stage can result in a higher chance of survival. The classical methods of detection are expensive and labor-intensive. Also, they rely on a trained practitioner's level, and the availability of the needed equipment is essential for the early detection of Melanoma. The current improvement in computer-aided systems is providing very… More
  •   Views:18       Downloads:17        Download PDF
  • Exploration of IoT Nodes Communication Using LoRaWAN in Forest Environment
  • Abstract The simultaneous advances in the Internet of Things (IoT), Artificial intelligence (AI) and Robotics is going to revolutionize our world in the near future. In recent years, LoRa (Long Range) wireless powered by LoRaWAN (LoRa Wide Area Network) protocol has attracted the attention of researchers for numerous applications in the IoT domain. LoRa is a low power, unlicensed Industrial, Scientific, and Medical (ISM) band-equipped wireless technology that utilizes a wide area network protocol, i.e., LoRaWAN, to incorporate itself into the network infrastructure. In this paper, we have evaluated the LoRaWAN communication protocol for the implementation of the IoT (Internet of Things)… More
  •   Views:15       Downloads:14        Download PDF
  • Optimal Hybrid Feature Extraction with Deep Learning for COVID-19 Classifications
  • Abstract Novel coronavirus 2019 (COVID-19) has affected the people's health, their lifestyle and economical status across the globe. The application of advanced Artificial Intelligence (AI) methods in combination with radiological imaging is useful in accurate detection of the disease. It also assists the physicians to take care of remote villages too. The current research paper proposes a novel automated COVID-19 analysis method with the help of Optimal Hybrid Feature Extraction (OHFE) and Optimal Deep Neural Network (ODNN) called OHFE-ODNN from chest x-ray images. The objective of the presented technique is for performing binary and multi-class classification of COVID-19 analysis from chest… More
  •   Views:17       Downloads:14        Download PDF
  • Human Faces Detection and Tracking for Crowd Management in Hajj and Umrah
  • Abstract Hajj and Umrah are two main religious duties for Muslims. To help faithfuls to perform their religious duties comfortably in overcrowded areas, a crowd management system is a must to control the entering and exiting for each place. Since the number of people is very high, an intelligent crowd management system can be developed to reduce human effort and accelerate the management process. In this work, we propose a crowd management process based on detecting, tracking, and counting human faces using Artificial Intelligence techniques. Human detection and counting will be performed to calculate the number of existing visitors and face… More
  •   Views:17       Downloads:14        Download PDF
  • A Secure Three-Party Authenticated Key Exchange Protocol for Social Networks
  • Abstract The 3PAKE (Three-Party Authenticated Key Exchange) protocol is a valuable cryptographic method that offers safe communication and permits two diverse parties to consent to a new safe meeting code using the trusted server. There have been explored numerous 3PAKE protocols earlier to create a protected meeting code between users employing the trusted server. However, existing modified 3PAKE protocols have numerous drawbacks and are incapable to provide desired secrecy against diverse attacks such as man-in-the-middle, brute-force attacks, and many others in social networks. In this article, the authors proposed an improved as well as safe 3PAKE protocol based on the hash… More
  •   Views:17       Downloads:14        Download PDF
  • Coronavirus Detection Using Two Step-AS Clustering and Ensemble Neural Network Model
  • Abstract This study presents a model of computer-aided intelligence capable of automatically detecting positive COVID-19 instances for use in regular medical applications. The proposed model is based on an Ensemble boosting Neural Network architecture and can automatically detect discriminatory features on chest X-ray images through Two Step-As clustering algorithm with rich filter families, abstraction and weight-sharing properties. In contrast to the generally used transformational learning approach, the proposed model was trained before and after clustering. The compilation procedure divides the datasets samples and categories into numerous sub-samples and subcategories and then assigns new group labels to each new group, with each… More
  •   Views:17       Downloads:19        Download PDF
  • Rainfall Forecasting Using Machine Learning Algorithms for Localized Events
  • Abstract A substantial amount of the Indian economy depends solely on agriculture. Rainfall, on the other hand, plays a significant role in agriculture–while an adequate amount of rainfall can be considered as a blessing, if the amount is inordinate or scant, it can ruin the entire hard work of the farmers. In this work, the rainfall dataset of the Vellore region, of Tamil Nadu, India, in the years 2021 and 2022 is forecasted using several machine learning algorithms. Feature engineering has been performed in this work in order to generate new features that remove all sorts of autocorrelation present in the… More
  •   Views:11       Downloads:13        Download PDF
  • Echo Location Based Bat Algorithm for Energy Efficient WSN Routing
  • Abstract Due to the wide range of applications, Wireless Sensor Networks (WSN) are increased in day to day life and becomes popular. WSN has marked its importance in both practical and research domains. Energy is the most significant resource, the important challenge in WSN is to extend its lifetime. The energy reduction is a key to extend the network's lifetime. Clustering of sensor nodes is one of the well-known and proved methods for achieving scalable and energy conserving WSN. In this paper, an energy efficient protocol is proposed using metaheuristic Echo location-based BAT algorithm (ECHO-BAT). ECHO-BAT works in two stages. First… More
  •   Views:20       Downloads:15        Download PDF