Special Issue "Nano/Micro Structures in Application of Computational Mechanics"

Submission Deadline: 28 February 2019 (closed)
Guest Editors
Prof. Chang-Chun Lee, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan.
Prof. Nien-Ti Tsou, Department of Material Science and Engineering, National Chiao Tung University, Taiwan.
Prof. Taek-Soo Kim, Department of Mechanical Engineering, KAIST, Korea.


The properties and applications of materials are determined by the nano/micro structures. Many important issues of structures, such as lattice mismatch, compatibility, orientation, evolution, phase transition, surfaces, interfaces, defects, domain engineering etc., are of interest and the corresponding mechanisms have not been fully understood. Thus, computational mechanics has been widely used to study such complexity in nano/micro structures in the recent decades. 

In this special issue we aim to include articles that provide new insight into the theoretical calculation and modeling in nano/micro structures. The topics of the Special Issue include, but are not limited to:

1. Nano/Micro structure modeling by using finite element model, phase field model, constitutive model, molecular dynamics, ab initio model etc. 

2. Nano/Micro structure evolution, such as domain wall movements, phase transition etc.

3. Nano/Micro structure engineering and applications, such as strained engineering, domain engineering etc.

4. Fractures and defects, such as voids with stress migration, failure mode etc.

5. Multi-physics and Multi-scale modeling, such as thermo-mechanical, electro-mechanical or magneto-electro-mechanical coupling problems etc.

Approaches of Computational Mechanics,Nano/Micro structures, Engineering Applications.

Published Papers

  • Overview of Computational Modeling in Nano/Micro Scaled Thin Films Mechanical Properties and Its Applications
  • Abstract This research reviews the application of computational mechanics on the properties of nano/micro scaled thin films, in which the application of different computational methods is included. The concept and fundamental theories of concerned applications, material behavior estimations, interfacial delamination behavior, strain engineering, and multilevel modeling are thoroughly discussed. Moreover, an example of an interfacial adhesion estimation is presented to systematically estimate the related mechanical reliability issue in the microelectronic industry. The presented results show that the peeled mode fracture is the dominant delamination behavior of layered material system, with high stiffness along the bonding interface. However, the shear mode fracture… More
  •   Views:487       Downloads:326        Download PDF

  • Energy Release Rates for Interface Cracks in Multilayered Structures
  • Abstract This paper examines the evolution of the interfacial deflection energy release rates in multilayered structures under four-point bending. The J-integral and the extended finite element method (XFEM) are adopted to investigate the evolution of the interfacial deflection energy release rates of composite structures. Numerical results not only verify the accuracy of analytical solutions for the steady-state interfacial deflection energy release rate, but also provide the evolutionary history of the interfacial deflection energy release rate under different crack lengths. In addition, non-dimensional parametric analyses are performed to discuss the effects of normalized ratios of the crack length, the elastic modulus, and… More
  •   Views:406       Downloads:280        Download PDF

  • Eigenvalue Analysis of Thin Plate with Complicated Shapes By a Novel Infinite Element Method
  • Abstract A novel infinite element method (IEM) is presented for solving plate vibration problems in this paper. In the proposed IEM, the substructure domain is partitioned into multiple layers of geometrically similar finite elements which use only the data of the boundary nodes. A convergence criterion based on the trace of the mass matrix is used to determine the number of layers in the IE model partitioning process. Furthermore, in implementing the Craig-Bampton (CB) reduction method, the inversion of the global stiffness matrix is calculated using only the stiffness matrix of the first element layer. The validity and performance of the… More
  •   Views:388       Downloads:265        Download PDF

  • Thickness Effect of Nanocrystalline Layer on the Deformation Mechanism of Amorphous/Crystalline Multilayered Structure
  • Abstract Different thickness of amorphous/nanocrystalline multi-layered structure can be used to modulate the strength and ductility of the composite materials. In this work, molecular dynamics simulations were conducted to study the thickness effect of nanocrystalline layer on mechanical properties and deformation behavior of the Cu64Zr36/Cu multi-layer structure. The stress-strain relationship, local stress, local strain, and deformation mechanism are investigated. The results reveal that the change of thickness of the crystalline layer significantly affects the mechanical properties and deformation behavior. As the strain at the elastic region, the amorphous Cu64Zr36 layer dominates the mechanical behavior, leading the fact that Young’s modulus, first… More
  •   Views:433       Downloads:319        Download PDF

  • Effects of Deformation Rate on the Unbinding Pathway of the MMP8-Aggrecan_IGD Complex in Cartilage
  • Abstract Mechanical force plays a critical role in the remodeling and degradation of cartilage tissues. The cartilage tissue generates, absorbs, and transmits mechanical force, enabling specific biological processes in our body. A moderate intensity mechanical force is necessary for cartilage tissue remodeling and the adaptation of biomechanical properties, but a high intensity mechanical force can lead to pathological degradation of cartilage tissue. However, the molecular mechanism of cartilage degradation is still unclear. We use full atomistic simulations with SMD simulations to investigate whether the magnitude of mechanical force affects the unbinding pathway of the MMP8-Aggrecan_IGD complex. We find that when the… More
  •   Views:442       Downloads:293        Download PDF

  • Computational Modeling of Dual-Phase Ceramics with Finsler-Geometric Phase Field Mechanics
  • Abstract A theory invoking concepts from differential geometry of generalized Finsler space in conjunction with diffuse interface modeling is described and implemented in finite element (FE) simulations of dual-phase polycrystalline ceramic microstructures. Order parameters accounting for fracture and other structural transformations, notably partial dislocation slip, twinning, or phase changes, are dimensionless entries of an internal state vector of generalized pseudo-Finsler space. Ceramics investigated in computations are a boron carbide-titanium diboride (B4C-TiB2) composite and a diamond-silicon carbide (C-SiC) composite. Deformation mechanisms-in addition to elasticity and cleavage fracture in grains of any phase-include restricted dislocation glide (TiB2 phase), deformation twinning (B4C and β-SiC… More
  •   Views:417       Downloads:319        Download PDF

  • Detection of Graphene Cracks By Electromagnetic Induction, Insensitive to Doping Level
  • Abstract Detection of cracks is a great concern in production and operation processes of graphene based devices to ensure uniform quality. Here, we show a detection method for graphene cracks by electromagnetic induction. The time varying magnetic field leads to induced voltage signals on graphene, and the signals are detected by a voltmeter. The measured level of induced voltage is correlated with the number of cracks in graphene positively. The correlation is attributed to the increasing inductive characteristic of defective graphene, and it is verified by electromagnetic simulation and radio frequency analysis. Furthermore, we demonstrate that the induced voltage signal is… More
  •   Views:405       Downloads:265        Download PDF

  • A Layer-Based Mesh Generator and Scheme for 3D Printing Simulation
  • Abstract 3D Printing, also called Additive Manufacturing, has become a promising manufacturing method to produce parts in various fields as it can produce parts even with very irregular shapes in a relatively shorter process and time. However, during the printing process, some problems could decrease the accuracy and quality of the printed parts, such as warpage due to thermal strains, deformation due to inadequate supports, etc. The finite element method is most commonly adopted to evaluate engineering problems in advance to reduce possible failures; however, the element meshes, needed for analyses, are always irregularly distributed, especially for irregular objects, and cannot… More
  •   Views:420       Downloads:283        Download PDF