Home / Journals / CMES / Vol.46, No.1, 2009
Special lssues
Table of Content
  • Open AccessOpen Access

    ARTICLE

    Expression for the Gradient of the First Normal Derivative of the Velocity Potential

    Zai You Yan1
    CMES-Computer Modeling in Engineering & Sciences, Vol.46, No.1, pp. 1-20, 2009, DOI:10.3970/cmes.2009.046.001
    Abstract It is well-known that the velocity potential and its first normal derivative on the structure surface can be easily found in the boundary element method for problems of potential flow. Based on an investigation in progress, the gradient of the normal derivative of the velocity potential will be very helpful in the treatment of the so-called hypersingular integral. Through a coordinate transformation, such gradient can be expressed by the combination of the first and the second normal derivatives of the velocity potential. Then one interesting problem is how to find the second normal derivative of the velocity potential through the… More >

  • Open AccessOpen Access

    ARTICLE

    Quasilinear Hybrid Boundary Node Method for Solving Nonlinear Problems

    F. Yan1,2, Y. Miao2,3, Q. N. Yang2
    CMES-Computer Modeling in Engineering & Sciences, Vol.46, No.1, pp. 21-50, 2009, DOI:10.3970/cmes.2009.046.021
    Abstract A novel boundary type meshless method called Quasilinear Hybrid Boundary Node Method (QHBNM), which combines quasilinearization method, dual reciprocity method (DRM) and hybrid boundary node method (HBNM), is developed to solving a class of nonlinear problems. The nonlinear term of the governing equation is linearized by the generated quasilinearization method, in which the solution of the linearized equation can exactly converge to the solution of original equation at a very wide range initial value, and the convergence rate is quadratic. Then dual hybrid boundary node method is applied to solving the linearized equation, in which DRM is introduced into HBNM… More >

  • Open AccessOpen Access

    ARTICLE

    Tracking Features in Image Sequences with Kalman Filtering, Global Optimization, Mahalanobis Distance and a Management Model

    Raquel R. Pinho1, João Manuel R. S. Tavares1
    CMES-Computer Modeling in Engineering & Sciences, Vol.46, No.1, pp. 51-76, 2009, DOI:10.3970/cmes.2009.046.051
    Abstract This work addresses the problem of tracking feature points along image sequences. In order to analyze the undergoing movement, an approach based on the Kalman filtering technique has been used, which basically carries out the estimation and correction of the features' movement in every image frame. So as to integrate the measurements obtained from each image into the Kalman filter, a data optimization process has been adopted to achieve the best global correspondence set. The proposed criterion minimizes the cost of global matching, which is based on the Mahalanobis distance. A management model is employed to manage the features being… More >

  • Open AccessOpen Access

    ARTICLE

    A Numerical Method for Estimating the Maximal Temperature Gradients Reached in Fire-Damaged Concrete Structures Based on the Parameter Identification

    Dong Wei1, Yinghua Liu1,2, Zhihai Xiang1
    CMES-Computer Modeling in Engineering & Sciences, Vol.46, No.1, pp. 77-106, 2009, DOI:10.3970/cmes.2009.046.077
    Abstract Taking advantage of the parameter identification, a new numerical method is developed in this paper to estimate the maximal temperature gradients reached in fire-damaged concrete structures. This method can avoid the hypotheses of temperature-time curve and fire duration usually made in conventional numerical methods, availably evaluate the depth and degree of fire damage of concrete structures and consider the effects of localized fire. A material model taking into account the properties of fire-damaged concrete is firstly proposed in the present research. The least-squares estimation and the Gauss-Newton method are used to identify the material parameters of fire-damaged concrete by means… More >

Per Page:

Share Link