Home / Journals / CMES / Vol.77, No.2, 2011
Table of Content
  • Open Access

    ARTICLE

    Modeling Two Phase Flow in Large Scale Fractured Porous Media with an Extended Multiple Interacting Continua Method

    A.B. Tatomir1,2, A.Szymkiewicz3, H. Class1, R. Helmig1
    CMES-Computer Modeling in Engineering & Sciences, Vol.77, No.2, pp. 81-112, 2011, DOI:10.3970/cmes.2011.077.081
    Abstract We present a two phase flow conceptual model, the corresponding simulator (2pMINC) and a workflow for large-scale fractured reservoirs, based on a continuum fracture approach which uses the multiple interacting continua (MINC) method complemented with an improved upscaling technique. The complex transient behavior of the flow processes in fractured porous media is captured by subgridding the coarse blocks in nested volume elements which have effective properties calculated from the detailed representation of the fracture system. In this way, we keep a physically based approach, preserve the accuracy of the model, avoid the common use of empirically derived transfer functions and… More >

  • Open Access

    ARTICLE

    Ab initio Molecular Dynamics of H2 Dissociative Adsorption on Graphene Surfaces

    Kentaro Doi1,2, Ikumi Onishi1, Satoyuki Kawano1,3
    CMES-Computer Modeling in Engineering & Sciences, Vol.77, No.2, pp. 113-136, 2011, DOI:10.3970/cmes.2011.077.113
    Abstract Hydrogen technologies are currently one of the most actively researched topics. A lot of researches have tied to enhance their energy conversion efficiencies. In the present study, numerical analyses have been carried out focusing on hydrogen-storage carbon materials which are expected to realize high gravimetric and volumetric capacities. In particular, dissociative adsorption processes of H2 molecules above graphene surfaces have been investigated by ab initio molecular dynamics. The present results indicate that a steric graphene surface plays an important role in enhancing the charge transfer which induces dissociation of H2 and adsorption of H atoms on the surface. The dissociation… More >

  • Open Access

    ARTICLE

    A Wavelet Numerical Method for Solving Nonlinear Fractional Vibration, Diffusion and Wave Equations

    Zhou YH1,2, Wang XM2, Wang JZ1,2 , Liu XJ2
    CMES-Computer Modeling in Engineering & Sciences, Vol.77, No.2, pp. 137-160, 2011, DOI:10.3970/cmes.2011.077.137
    Abstract In this paper, we present an efficient wavelet-based algorithm for solving a class of fractional vibration, diffusion and wave equations with strong nonlinearities. For this purpose, we first suggest a wavelet approximation for a function defined on a bounded interval, in which expansion coefficients are just the function samplings at each nodal point. As the fractional differential equations containing strong nonlinear terms and singular integral kernels, we then use Laplace transform to convert them into the second type Voltera integral equations with non-singular kernels. Certain property of the integral kernel and the ability of explicit wavelet approximation to the nonlinear… More >

Share Link

WeChat scan