Home / Journals / CMES / Vol.98, No.2, 2014
Table of Content
  • Open Access

    ARTICLE

    Patient-Specific Modeling in Urogynecology: A Meshfree Approach

    J.B. Alford1, D.C. Simkins1, R.A. Rembert1, L. Hoyte, MD2
    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.2, pp. 129-149, 2014, DOI:10.3970/cmes.2014.098.129
    Abstract Mechanical deformation of tissues in the female pelvic floor is believed to be central to understanding a number of important aspects of women’s health, particularly pelvic floor dysfunction. A 2008 study of US women reported the prevalence of pelvic floor disorders in the 20 and 39 years range as 9.7% with the prevalence increasing with age until it reaches roughly 50% in the 80 and older age group [Nygaard, Barber, Burgio, and et al (2008)]. Clinical observation indicates a strong correlation between problems such as pelvic organ prolapse/urinary incontinence and vaginal childbirth. It is thought that childbirth parameters like fetal… More >

  • Open Access

    ARTICLE

    Modeling Cell Spreading and Alignment on Micro-Wavy Surfaces

    E. P. Yalcintas1, J. Hu1, Y. Liu1,2, A. Voloshin1,2,3
    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.2, pp. 151-180, 2014, DOI:10.3970/cmes.2014.098.151
    Abstract Mechanical behavior of cells plays a crucial role in response to external stimuli and environment. It is very important to elucidate the mechanisms of cellular activities like spreading and alignment as it would shed light on further biological concepts. In this study, a multi-scale computational approach is adopted by modeling the cytoskeleton of cell as a tensegrity structure. The model is based on the complementary force balance between the tension and compression elements, resembling the internal structure of cell cytoskeleton composed of microtubules and actin filaments. The effect of surface topology on strain energy of a spread cell is investigated… More >

  • Open Access

    ARTICLE

    Multiscale Modeling of Collagen Fibril in Bone at Various Crosslink Densities: An Insight into Its Deformation Mechanisms

    S.M. Pradhan1, K.S.Katti1, D.R. Katti1
    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.2, pp. 181-201, 2014, DOI:10.3970/cmes.2014.098.181
    Abstract Multiscale modeling of collagen fibril is carried out by incorporating the material properties of collagen obtained from steered molecular dynamics into the finite element model of collagen fibril with inclusion of crosslinks. The results indicate that the nonbonded interactions between collagen and mineral contribute to the significant enhancement of the elastic modulus of collagen fibril at all the crosslink densities in both the low strain and high strain regimes. The crosslinks are found to play an important role in the mechanical response of collagen fibril, the enhancement in elastic modulus ranging from 5-11% for various crosslink densities compared to the… More >

  • Open Access

    ARTICLE

    Geometrical Modeling of Cell Division and Cell Remodeling Based on Voronoi Tessellation Method

    Liqiang Lin1, Xianqiao Wang2, Xiaowei Zeng1,3
    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.2, pp. 203-220, 2014, DOI:10.3970/cmes.2014.098.203
    Abstract The Voronoi tessellation is employed to describe cellular patterns and to simulate cell division and cell remodeling in epithelial tissue. First, Halton sequence is utilized to generate the random generators of Voronoi cell points. The centroidal Voronoi cell center is obtained by probabilistic Lloyd's method and polygonal structure of cell distribution is modeled. Based on the polygonal shape of cells, the instantaneous mechanism of cell division is applied to simulate the cell proliferation and remodeling. Four kinds of single-cell division algorithms are designed with the consideration of cleavage angle. From these simulations, we find that cell topological structure varies case… More >

  • Open Access

    ARTICLE

    Design Evaluation of a Particle Bombardment System Used to Deliver Substances into Cells

    Eduardo M. B. Campello1,2, Tarek I. Zohdi3
    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.2, pp. 221-245, 2014, DOI:10.3970/cmes.2014.098.221
    Abstract This work deals with the bombardment of a stream of particles possessing varying mean particle size, velocity and aspect ratio into a cell that has fixed (known) compliance characteristics. The particles are intended to penetrate the cell membrane causing zero or minimum damage and deliver foreign substances (which are attached to their surfaces) to the interior of the cell. We adopt a particle-based (discrete element method) computational model that has been recently developed by the authors to describe both the incoming stream of particles and the cell membrane. By means of parametric numerical simulations, treating the stream’s mean particle size,… More >

Share Link

WeChat scan