Special Issue "Nonlinear Computational and Control Methods in Aerospace Engineering"

Submission Deadline: 01 October 2019 (closed)
Guest Editors
Prof. Honghua Dai, School of Astronautics, Northwestern Polytechnical University, China
Prof. Xiaokui Yue, School of Astronautics, Northwestern Polytechnical University, China
Prof. Cheinshan Liu, Hohai University, China
Prof. Earl Dowell, School of Engineering, Duke University, USA


Almost all real engineering systems are essentially nonlinear. Linear systems are just idealized models that approximate the nonlinear systems in a prescribed situation subject to a certain accuracy. Once nonlinearity is included, analytical solutions are rarely available for almost all real problems. Therefore, nonlinear computational methods are becoming important. In most aerospace problems, however, a relatively high-fidelity nonlinear model has to be established, especially when the system is immersing in a complicated environment and nonlinearity is not negligible anymore. Many complex phenomena, i.e., bifurcation, limit cycle oscillation, chaos, turbulence, may occur in a variety of aerospace systems, which may be described by nonlinear Ordinary Differential Equations (ODEs) for rigid body problems or Partial Differential Equations (PDEs) for flexible solids or fluid mechanics problems. In general, nonlinearity in aerospace systems is often regarded as unwanted and troublemaker, due to the fact that considering nonlinearity makes the solution methods as well as the control methods more difficult. Therefore, there has been a general tendency to circumvent, design around them, control them, or simply ignore them. However, in recent years, advanced computational and control methods have been developing so fast that complex nonlinear systems become more and more solvable. So, exploiting the benefits arising from systems' nonlinearities turns out to be a novel and crucial subject. This special issue is dedicated to the study of the dynamics and control of aircraft and spacecraft. It aims at stimulating an intense interaction between the two areas, and bringing new computational methods, control methods, modeling methods, and experiment methods from one area to the other. In summary, nonlinear features are inherent in modern aerospace engineering problems, and therefore very important to analyze. 

Potential topics include, but may not be limited to:

(1) Novel nonlinear computational methods for dynamical systems
(2) Data-based modeling of nonlinear dynamics and control
(3) Nonlinear control methods in spacecraft dynamics 
(4) Efficient computational methods in orbital dynamics
(5) Nonlinear structural dynamics in airfoil and whole-body aircraft
(6) Ground experiments for aircraft and spacecraft dynamics

Nonlinear computational methods, data-based modeling, spacecraft dynamics, nonlinear control

Published Papers

  • Parallelized Implementation of the Finite Particle Method for Explicit Dynamics in GPU
  • Abstract As a novel kind of particle method for explicit dynamics, the finite particle method (FPM) does not require the formation or solution of global matrices, and the evaluations of the element equivalent forces and particle displacements are decoupled in nature, thus making this method suitable for parallelization. The FPM also requires an acceleration strategy to overcome the heavy computational burden of its explicit framework for time-dependent dynamic analysis. To this end, a GPU-accelerated parallel strategy for the FPM is proposed in this paper. By taking advantage of the independence of each step of the FPM workflow, a generic parallelized computational… More
  •   Views:2787       Downloads:701        Download PDF

  • Dynamic Analysis of Stochastic Friction Systems Using the Generalized Cell Mapping Method
  • Abstract Friction systems are a kind of typical non-linear dynamical systems in the actual engineering and often generate abundant dynamics phenomena. Because of non-smooth characteristics, it is difficult to handle these systems by conventional analysis methods directly. At the same time, random perturbation often affects friction systems and makes these systems more complicated. In this context, we investigate the steady-state stochastic responses and stochastic P-bifurcation of friction systems under random excitations in this paper. And in order to retain the non-smooth of friction system, the generalized cell mapping (GCM) method is first used to the original stochastic friction systems without any… More
  •   Views:2575       Downloads:471        Download PDF

  • Hybrid Passive/Active Vibration Control of a Loosely Connected Spacecraft System
  • Abstract In this paper, a hybrid passive/active vibration (HPAV) controller of a loosely connected spacecraft consisting of a servicing satellite, a target and an X-shape structure isolator is first proposed to suppress vibrations of the system when subjected to the impulsive external excitations during the on-orbit missions. The passive dynamic response of the combined system can be adjusted appropriately to achieve the desired vibration isolation performance by tuning the structural parameters of the bio-inspired X-shape structure. Moreover, the adaptive control design through dynamic scaling technique is selected as the active component to maintain high vibration isolation performance in the presence of… More
  •   Views:2495       Downloads:509        Download PDF

  • Adaptive Quasi Fixed-Time Orbit Control Around Asteroid with Performance Guarantees
  • Abstract This paper investigates a novel quasi fixed-time orbit tracking control method for spacecraft around an asteroid in the presence of uncertain dynamics and unknown uncertainties. To quantitatively characterize the transient and steady-state responses of orbit tracking error system, a continuous performance function is devised via using a quartic polynomial. Then, integrating backstepping control technique and barrier Lyapunov function leads to a quasi fixed-time convergent orbit tracking controller without using any fractional state information and symbolic functions. Finally, two groups of illustrative examples are employed to test the effectiveness of the proposed orbit control method. More
  •   Views:2729       Downloads:496        Download PDF

  • A Robust Roll Stabilization Controller with Aerodynamic Disturbance and Actuator Failure Consideration
  • Abstract Combining adaptive theory with an advanced second-order sliding mode control algorithm, a roll stabilization controller with aerodynamic disturbance and actuator failure consideration for spinning flight vehicles is proposed in this paper. The presented controller is summarized as an “observer-controller” system. More specifically, an adaptive second-order sliding mode observer is presented to select the proper design parameters and estimate the knowledge of aerodynamic disturbance and actuator failure, while the proposed roll stabilization control scheme can drive both roll angle and rotation rate smoothly converge to the desired value. Theoretical analysis and numerical simulation results demonstrate the effectiveness of the proposed controller. More
  •   Views:3075       Downloads:433        Download PDF

  • A Novel Two-Level Optimization Strategy for Multi-Debris Active Removal Mission in LEO
  • Abstract Recent studies of the space debris environment in Low Earth Orbit (LEO) have shown that the critical density of space debris has been reached in certain regions. The Active Debris Removal (ADR) mission, to mitigate the space debris density and stabilize the space debris environment, has been considered as a most effective method. In this paper, a novel two-level optimization strategy for multi-debris removal mission in LEO is proposed, which includes the low-level and high-level optimization process. To improve the overall performance of the multi-debris active removal mission and obtain multiple Pareto-optimal solutions, the ADR mission is seen as a… More
  •   Views:1513       Downloads:439        Download PDF

  • Observability Analysis in Parameters Estimation of an Uncooperative Space Target
  • Abstract To study the parameter estimating effects of a free-floating tumbling space target, the extended Kalman filter (EKF) scheme is utilized with different high-nonlinear translational and rotational coupled kinematic & dynamic models on the LIDAR measurements. Applying the aforementioned models and measurements results in the situation where one single state can be estimated differently with varying accuracies since the EKFs based on different models have different observabilities. In the proposed EKFs, the traditional quaternions based kinematics and dynamics and the dual vector quaternions (DVQ) based kinematics and dynamics are used for the modeling of the relative motions between a chaser satellite… More
  •   Views:1317       Downloads:450        Download PDF

  • Study on Forced Straight-Line Guidance for the Final Translation Phase of Spacecraft Rendezvous
  • Abstract Aimed at the problem of final translation of space rendezvous for the applications such as docking, inspection and tracking, optimal straight-line guidance algorithm based on pulse/continuous low-thrust in the context of Clohessy-Wiltshire dynamics is proposed. Two modes of guidance strategy: varying-speed and fixed-speed approaching scheme for V-bar and R-bar approach by using constant/finite low-thrust propulsion respectively are studied, and the corresponding fuel-optimal conditions are obtained. Numerical simulation is conducted to verify and test the proposed algorithms. The results show that there is generally no different between the fuel consumptions by using the two different approaching modes for V-bar case. However,… More
  •   Views:1479       Downloads:443        Download PDF

  • Analytic Initial Relative Orbit Solution for Angles-Only Space Rendezvous Using Hybrid Dynamics Method
  • Abstract A closed-form solution to the angles-only initial relative orbit determination (IROD) problem for space rendezvous with non-cooperated target is developed, where a method of hybrid dynamics with the concept of virtual formation is introduced to analytically solve the problem. Emphasis is placed on developing the solution based on hybrid dynamics (i.e., Clohessy-Wiltshire equations and two-body dynamics), obtaining formation geometries that produce relative orbit state observability, and deriving the approximate analytic error covariance for the IROD solution. A standard Monte Carlo simulation system based on two-body dynamics is used to verify the feasibility and evaluate the performance proposed algorithms. The sensitivity… More
  •   Views:1303       Downloads:448        Download PDF

  • Agile Satellite Mission Planning via Task Clustering and Double-Layer Tabu Algorithm
  • Abstract Satellite observation schedule is investigated in this paper. A mission planning algorithm of task clustering is proposed to improve the observation efficiency of agile satellite. The newly developed method can make the satellite observe more targets and therefore save observation resources. First, for the densely distributed target points, a pre-processing scheme based on task clustering is proposed. The target points are clustered according to the distance condition. Second, the local observation path is generated by Tabu algorithm in the inner layer of cluster regions. Third, considering the scatter and cluster sets, the global observation path is obtained by adopting Tabu… More
  •   Views:1361       Downloads:469        Download PDF