Special Issue "AI-Driven Intelligent Sensor Networks: Key Enabling Theories, Architectures, Modeling, and Techniques"

Submission Deadline: 31 July 2022
Submit to Special Issue
Guest Editors
Dr. Han Wang, City University of Macau, China
Prof. Lingwei Xu, Qingdao University of Science and Technology, China
Prof. T. Aaron Gulliver, University of Victoria, Canada

Summary

5G has been fully commercialized. With the continuous penetration of 5G in the vertical industry, people's idea of 6G is gradually put on the agenda. Facing 2030 +, 6G will fully support the digitization of the whole world on the basis of 5G, and combine with the development of artificial intelligence (AI) and other technologies to promote the society to move towards the "digital twin" world of virtual and reality, and realize the beautiful vision of "digital twin and ubiquitous wisdom". 6G integrates the digital world and the physical world. It is no longer a simple communication transmission channel, but also can sense everything, so as to realize the intelligence of everything. 6G will become the network of sensors and machine learning, the data center is the brain, and machine learning will spread all over the network. The key feature of 6G is native AI, which is distributed all over sensor network. It optimizes and manages the communication sensor network. The communication sensor network can be self-generated and self-evolving.

AI technology supporting 6G will allow the creation of the "smart application layer" for interconnecting devices, from self-driving cars to medical implants to geo sensors, all of which can communicate with each other in real time. This wide coverage network will be supported by an "intelligent sensor layer", which will quickly collect and analyze a large amount of relevant data from these interconnected devices.

However, the research of intelligent sensor is still in its infancy, and there are some technical difficulties to be solved. This special section focuses on the application of intelligent sensor in AI assisted sensor networks to timely publish the research results of intelligent sensor based on AI, and promote the development of intelligent sensor key technology.

Potential topics include but are not limited to the following:

1.      AI-based intelligent sensor network modeling.

2.      PHY-layer intelligent sensor network enablers: massive MIMO, mmWave, full-duplex, NOMA, etc.

3.      AI-powered intelligent Network-layer protocols, frameworks, infrastructures, IoT devices.

4.      AI-based energy-efficiency/harvesting optimization modeling for intelligent sensor network.

5.      AI-based network security and privacy modeling for intelligent sensor network.

6.      Advance intelligent big data analytics in intelligent sensor network model.

7.      Intelligent sensor applications: smart home, smart E-health, smart cities, intelligent manufacturing, etc.