Home / Journals / CMC / Vol.81, No.1, 2024
Special Issues
Table of Content
  • Open AccessOpen Access

    ARTICLE

    Industrial Fusion Cascade Detection of Solder Joint

    Chunyuan Li1,2,3, Peng Zhang1,2,3, Shuangming Wang4, Lie Liu4, Mingquan Shi2,*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1197-1214, 2024, DOI:10.32604/cmc.2024.055893 - 15 October 2024
    Abstract With the remarkable advancements in machine vision research and its ever-expanding applications, scholars have increasingly focused on harnessing various vision methodologies within the industrial realm. Specifically, detecting vehicle floor welding points poses unique challenges, including high operational costs and limited portability in practical settings. To address these challenges, this paper innovatively integrates template matching and the Faster RCNN algorithm, presenting an industrial fusion cascaded solder joint detection algorithm that seamlessly blends template matching with deep learning techniques. This algorithm meticulously weights and fuses the optimized features of both methodologies, enhancing the overall detection capabilities. Furthermore,… More >

  • Open AccessOpen Access

    ARTICLE

    Leveraging Sharding-Based Hybrid Consensus for Blockchain

    Hind Baageel1, Md Mahfuzur Rahman1,2,*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1215-1233, 2024, DOI:10.32604/cmc.2024.055908 - 15 October 2024
    Abstract The advent of blockchain technology has transformed traditional methods of information exchange, shifting reliance from centralized data centers to decentralized frameworks. While blockchain’s decentralization and security are strengths, traditional consensus mechanisms like Proof of Work (PoW) and Proof of Stake (PoS) face limitations in scalability. PoW achieves decentralization and security but struggles with scalability as transaction volumes grow, while PoS enhances scalability, but risks centralization due to monopolization by high-stake participants. Sharding, a recent advancement in blockchain technology, addresses scalability by partitioning the network into shards that process transactions independently, thereby improving throughput and reducing… More >

  • Open AccessOpen Access

    ARTICLE

    Adversarial Defense Technology for Small Infrared Targets

    Tongan Yu1, Yali Xue1,*, Yiming He1, Shan Cui2, Jun Hong2
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1235-1250, 2024, DOI:10.32604/cmc.2024.056075 - 15 October 2024
    Abstract With the rapid development of deep learning-based detection algorithms, deep learning is widely used in the field of infrared small target detection. However, well-designed adversarial samples can fool human visual perception, directly causing a serious decline in the detection quality of the recognition model. In this paper, an adversarial defense technology for small infrared targets is proposed to improve model robustness. The adversarial samples with strong migration can not only improve the generalization of defense technology, but also save the training cost. Therefore, this study adopts the concept of maximizing multidimensional feature distortion, applying noise… More >

  • Open AccessOpen Access

    ARTICLE

    Improved Harris Hawks Algorithm and Its Application in Feature Selection

    Qianqian Zhang1, Yingmei Li1,*, Jianjun Zhan2,*, Shan Chen1
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1251-1273, 2024, DOI:10.32604/cmc.2024.053892 - 15 October 2024
    Abstract This research focuses on improving the Harris’ Hawks Optimization algorithm (HHO) by tackling several of its shortcomings, including insufficient population diversity, an imbalance in exploration vs. exploitation, and a lack of thorough exploitation depth. To tackle these shortcomings, it proposes enhancements from three distinct perspectives: an initialization technique for populations grounded in opposition-based learning, a strategy for updating escape energy factors to improve the equilibrium between exploitation and exploration, and a comprehensive exploitation approach that utilizes variable neighborhood search along with mutation operators. The effectiveness of the Improved Harris Hawks Optimization algorithm (IHHO) is assessed by… More >

  • Open AccessOpen Access

    ARTICLE

    Advancing Autoencoder Architectures for Enhanced Anomaly Detection in Multivariate Industrial Time Series

    Byeongcheon Lee1, Sangmin Kim1, Muazzam Maqsood2, Jihoon Moon3,*, Seungmin Rho1,4,*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1275-1300, 2024, DOI:10.32604/cmc.2024.054826 - 15 October 2024
    (This article belongs to the Special Issue: AI and Data Security for the Industrial Internet)
    Abstract In the context of rapid digitization in industrial environments, how effective are advanced unsupervised learning models, particularly hybrid autoencoder models, at detecting anomalies in industrial control system (ICS) datasets? This study is crucial because it addresses the challenge of identifying rare and complex anomalous patterns in the vast amounts of time series data generated by Internet of Things (IoT) devices, which can significantly improve the reliability and safety of these systems. In this paper, we propose a hybrid autoencoder model, called ConvBiLSTM-AE, which combines convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) to More >

  • Open AccessOpen Access

    ARTICLE

    Dynamic Networking Method of Vehicles in VANET

    Qingkun Chen, Qinmu Wu*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1301-1318, 2024, DOI:10.32604/cmc.2024.054799 - 15 October 2024
    (This article belongs to the Special Issue: Advanced Communication and Networking Technologies for Internet of Things and Internet of Vehicles)
    Abstract Vehicular Ad-hoc Networks (VANETs) make it easy to transfer information between vehicles, and this feature is utilized to enable collaborative decision-making between vehicles to enhance the safety, economy, and entertainment of vehicle operation. The high mobility of vehicles leads to a time-varying topology between vehicles, which makes inter-vehicle information transfer challenging in terms of delay control and ensuring the stability of collaborative decision-making among vehicles. The clustering algorithm is a method aimed at improving the efficiency of VANET communication. Currently, most of the research based on this method focuses on maintaining the stability of vehicle… More >

  • Open AccessOpen Access

    ARTICLE

    Continual Reinforcement Learning for Intelligent Agricultural Management under Climate Changes

    Zhaoan Wang1, Kishlay Jha2, Shaoping Xiao1,*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1319-1336, 2024, DOI:10.32604/cmc.2024.055809 - 15 October 2024
    Abstract Climate change poses significant challenges to agricultural management, particularly in adapting to extreme weather conditions that impact agricultural production. Existing works with traditional Reinforcement Learning (RL) methods often falter under such extreme conditions. To address this challenge, our study introduces a novel approach by integrating Continual Learning (CL) with RL to form Continual Reinforcement Learning (CRL), enhancing the adaptability of agricultural management strategies. Leveraging the Gym-DSSAT simulation environment, our research enables RL agents to learn optimal fertilization strategies based on variable weather conditions. By incorporating CL algorithms, such as Elastic Weight Consolidation (EWC), with established… More >

  • Open AccessOpen Access

    ARTICLE

    Computation Offloading in Edge Computing for Internet of Vehicles via Game Theory

    Jianhua Liu*, Jincheng Wei, Rongxin Luo, Guilin Yuan, Jiajia Liu, Xiaoguang Tu
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1337-1361, 2024, DOI:10.32604/cmc.2024.056286 - 15 October 2024
    (This article belongs to the Special Issue: Multi-Service and Resource Management in Intelligent Edge-Cloud Platform)
    Abstract With the rapid advancement of Internet of Vehicles (IoV) technology, the demands for real-time navigation, advanced driver-assistance systems (ADAS), vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications, and multimedia entertainment systems have made in-vehicle applications increasingly computing-intensive and delay-sensitive. These applications require significant computing resources, which can overwhelm the limited computing capabilities of vehicle terminals despite advancements in computing hardware due to the complexity of tasks, energy consumption, and cost constraints. To address this issue in IoV-based edge computing, particularly in scenarios where available computing resources in vehicles are scarce, a multi-master and multi-slave double-layer game model More >

  • Open AccessOpen Access

    ARTICLE

    HQNN-SFOP: Hybrid Quantum Neural Networks with Signal Feature Overlay Projection for Drone Detection Using Radar Return Signals—A Simulation

    Wenxia Wang, Jinchen Xu, Xiaodong Ding, Zhihui Song, Yizhen Huang, Xin Zhou, Zheng Shan*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1363-1390, 2024, DOI:10.32604/cmc.2024.054055 - 15 October 2024
    (This article belongs to the Special Issue: Advanced Artificial Intelligence and Machine Learning Frameworks for Signal and Image Processing Applications)
    Abstract With the wide application of drone technology, there is an increasing demand for the detection of radar return signals from drones. Existing detection methods mainly rely on time-frequency domain feature extraction and classical machine learning algorithms for image recognition. This method suffers from the problem of large dimensionality of image features, which leads to large input data size and noise affecting learning. Therefore, this paper proposes to extract signal time-domain statistical features for radar return signals from drones and reduce the feature dimension from 512 × 4 to 16 dimensions. However, the downscaled feature data… More >

  • Open AccessOpen Access

    ARTICLE

    Hierarchical Optimization Method for Federated Learning with Feature Alignment and Decision Fusion

    Ke Li1,*, Xiaofeng Wang1,2,*, Hu Wang1
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1391-1407, 2024, DOI:10.32604/cmc.2024.054484 - 15 October 2024
    Abstract In the realm of data privacy protection, federated learning aims to collaboratively train a global model. However, heterogeneous data between clients presents challenges, often resulting in slow convergence and inadequate accuracy of the global model. Utilizing shared feature representations alongside customized classifiers for individual clients emerges as a promising personalized solution. Nonetheless, previous research has frequently neglected the integration of global knowledge into local representation learning and the synergy between global and local classifiers, thereby limiting model performance. To tackle these issues, this study proposes a hierarchical optimization method for federated learning with feature alignment… More >

  • Open AccessOpen Access

    ARTICLE

    Research on Tensor Multi-Clustering Distributed Incremental Updating Method for Big Data

    Hongjun Zhang1,2, Zeyu Zhang3, Yilong Ruan4, Hao Ye5,6, Peng Li1,*, Desheng Shi1
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1409-1432, 2024, DOI:10.32604/cmc.2024.055406 - 15 October 2024
    Abstract The scale and complexity of big data are growing continuously, posing severe challenges to traditional data processing methods, especially in the field of clustering analysis. To address this issue, this paper introduces a new method named Big Data Tensor Multi-Cluster Distributed Incremental Update (BDTMCDIncreUpdate), which combines distributed computing, storage technology, and incremental update techniques to provide an efficient and effective means for clustering analysis. Firstly, the original dataset is divided into multiple sub-blocks, and distributed computing resources are utilized to process the sub-blocks in parallel, enhancing efficiency. Then, initial clustering is performed on each sub-block… More >

  • Open AccessOpen Access

    ARTICLE

    Constructive Robust Steganography Algorithm Based on Style Transfer

    Xiong Zhang1,2, Minqing Zhang1,2,3,*, Xu’an Wang1,2,3,*, Siyuan Huang1,2, Fuqiang Di1,2
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1433-1448, 2024, DOI:10.32604/cmc.2024.056742 - 15 October 2024
    Abstract Traditional information hiding techniques achieve information hiding by modifying carrier data, which can easily leave detectable traces that may be detected by steganalysis tools. Especially in image transmission, both geometric and non-geometric attacks can cause subtle changes in the pixels of the image during transmission. To overcome these challenges, we propose a constructive robust image steganography technique based on style transformation. Unlike traditional steganography, our algorithm does not involve any direct modifications to the carrier data. In this study, we constructed a mapping dictionary by setting the correspondence between binary codes and image categories and… More >

  • Open AccessOpen Access

    ARTICLE

    LQTTrack: Multi-Object Tracking by Focusing on Low-Quality Targets Association

    Suya Li1, Ying Cao1,*, Hengyi Ren2, Dongsheng Zhu3, Xin Xie1
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1449-1470, 2024, DOI:10.32604/cmc.2024.056824 - 15 October 2024
    (This article belongs to the Special Issue: Machine Vision Detection and Intelligent Recognition, 2nd Edition)
    Abstract Multi-object tracking (MOT) has seen rapid improvements in recent years. However, frequent occlusion remains a significant challenge in MOT, as it can cause targets to become smaller or disappear entirely, resulting in low-quality targets, leading to trajectory interruptions and reduced tracking performance. Different from some existing methods, which discarded the low-quality targets or ignored low-quality target attributes. LQTTrack, with a low-quality association strategy (LQA), is proposed to pay more attention to low-quality targets. In the association scheme of LQTTrack, firstly, multi-scale feature fusion of FPN (MSFF-FPN) is utilized to enrich the feature information and assist… More >

  • Open AccessOpen Access

    ARTICLE

    TGAIN: Geospatial Data Recovery Algorithm Based on GAIN-LSTM

    Lechan Yang1,*, Li Li2, Shouming Ma3
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1471-1489, 2024, DOI:10.32604/cmc.2024.056379 - 15 October 2024
    Abstract Accurate geospatial data are essential for geographic information systems (GIS), environmental monitoring, and urban planning. The deep integration of the open Internet and geographic information technology has led to increasing challenges in the integrity and security of spatial data. In this paper, we consider abnormal spatial data as missing data and focus on abnormal spatial data recovery. Existing geospatial data recovery methods require complete datasets for training, resulting in time-consuming data recovery and lack of generalization. To address these issues, we propose a GAIN-LSTM-based geospatial data recovery method (TGAIN), which consists of two main works:… More >

  • Open AccessOpen Access

    ARTICLE

    PSMFNet: Lightweight Partial Separation and Multiscale Fusion Network for Image Super-Resolution

    Shuai Cao1,3, Jianan Liang1,2,*, Yongjun Cao1,2,3,4, Jinglun Huang1,4, Zhishu Yang1,4
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1491-1509, 2024, DOI:10.32604/cmc.2024.049314 - 15 October 2024
    Abstract The employment of deep convolutional neural networks has recently contributed to significant progress in single image super-resolution (SISR) research. However, the high computational demands of most SR techniques hinder their applicability to edge devices, despite their satisfactory reconstruction performance. These methods commonly use standard convolutions, which increase the convolutional operation cost of the model. In this paper, a lightweight Partial Separation and Multiscale Fusion Network (PSMFNet) is proposed to alleviate this problem. Specifically, this paper introduces partial convolution (PConv), which reduces the redundant convolution operations throughout the model by separating some of the features of… More >

  • Open AccessOpen Access

    ARTICLE

    Elevating Localization Accuracy in Wireless Sensor Networks: A Refined DV-Hop Approach

    Muhammad Aamer Ejaz1,*, Kamalrulnizam Abu Bakar1, Ismail Fauzi Bin Isnin1, Babangida Isyaku1,2,*, Taiseer Abdalla Elfadil Eisa3, Abdelzahir Abdelmaboud4, Asma Abbas Hassan Elnour3
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1511-1528, 2024, DOI:10.32604/cmc.2024.054938 - 15 October 2024
    Abstract Localization is crucial in wireless sensor networks for various applications, such as tracking objects in outdoor environments where GPS (Global Positioning System) or prior installed infrastructure is unavailable. However, traditional techniques involve many anchor nodes, increasing costs and reducing accuracy. Existing solutions do not address the selection of appropriate anchor nodes and selecting localized nodes as assistant anchor nodes for the localization process, which is a critical element in the localization process. Furthermore, an inaccurate average hop distance significantly affects localization accuracy. We propose an improved DV-Hop algorithm based on anchor sets (AS-IDV-Hop) to improve… More >

  • Open AccessOpen Access

    ARTICLE

    Multi-UAV Collaborative Mission Planning Method for Self-Organized Sensor Data Acquisition

    Shijie Yang1, Jiateng Yuan1, Zhipeng Zhang1, Zhibo Chen1,2, Hanchao Zhang4, Xiaohui Cui1,2,3,*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1529-1563, 2024, DOI:10.32604/cmc.2024.055402 - 15 October 2024
    (This article belongs to the Special Issue: AI-Assisted Energy Harvesting Techniques and its Applications in Wireless Sensor Networks)
    Abstract In recent years, sensor technology has been widely used in the defense and control of sensitive areas in cities, or in various scenarios such as early warning of forest fires, monitoring of forest pests and diseases, and protection of endangered animals. Deploying sensors to collect data and then utilizing unmanned aerial vehicle (UAV) to collect the data stored in the sensors has replaced traditional manual data collection as the dominant method. The current strategies for efficient data collection in above scenarios are still imperfect, and the low quality of the collected data and the excessive… More >

  • Open AccessOpen Access

    ARTICLE

    Research on Fine-Grained Recognition Method for Sensitive Information in Social Networks Based on CLIP

    Menghan Zhang1,2, Fangfang Shan1,2,*, Mengyao Liu1,2, Zhenyu Wang1,2
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1565-1580, 2024, DOI:10.32604/cmc.2024.056008 - 15 October 2024
    Abstract With the emergence and development of social networks, people can stay in touch with friends, family, and colleagues more quickly and conveniently, regardless of their location. This ubiquitous digital internet environment has also led to large-scale disclosure of personal privacy. Due to the complexity and subtlety of sensitive information, traditional sensitive information identification technologies cannot thoroughly address the characteristics of each piece of data, thus weakening the deep connections between text and images. In this context, this paper adopts the CLIP model as a modality discriminator. By using comparative learning between sensitive image descriptions and… More >

  • Open AccessOpen Access

    ARTICLE

    Blockchain-Enabled Federated Learning with Differential Privacy for Internet of Vehicles

    Chi Cui1,2, Haiping Du2, Zhijuan Jia1,*, Yuchu He1, Lipeng Wang1
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1581-1593, 2024, DOI:10.32604/cmc.2024.055557 - 15 October 2024
    (This article belongs to the Special Issue: Trustworthy Wireless Computing Power Networks Assisted by Blockchain)
    Abstract The rapid evolution of artificial intelligence (AI) technologies has significantly propelled the advancement of the Internet of Vehicles (IoV). With AI support, represented by machine learning technology, vehicles gain the capability to make intelligent decisions. As a distributed learning paradigm, federated learning (FL) has emerged as a preferred solution in IoV. Compared to traditional centralized machine learning, FL reduces communication overhead and improves privacy protection. Despite these benefits, FL still faces some security and privacy concerns, such as poisoning attacks and inference attacks, prompting exploration into blockchain integration to enhance its security posture. This paper… More >

  • Open AccessOpen Access

    ARTICLE

    KubeFuzzer: Automating RESTful API Vulnerability Detection in Kubernetes

    Tao Zheng1, Rui Tang1,2,3, Xingshu Chen1,2,3,*, Changxiang Shen1
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1595-1612, 2024, DOI:10.32604/cmc.2024.055180 - 15 October 2024
    Abstract RESTful API fuzzing is a promising method for automated vulnerability detection in Kubernetes platforms. Existing tools struggle with generating lengthy, high-semantic request sequences that can pass Kubernetes API gateway checks. To address this, we propose KubeFuzzer, a black-box fuzzing tool designed for Kubernetes RESTful APIs. KubeFuzzer utilizes Natural Language Processing (NLP) to extract and integrate semantic information from API specifications and response messages, guiding the generation of more effective request sequences. Our evaluation of KubeFuzzer on various Kubernetes clusters shows that it improves code coverage by 7.86% to 36.34%, increases the successful response rate by More >

  • Open AccessOpen Access

    ARTICLE

    Multiscale Feature Fusion for Gesture Recognition Using Commodity Millimeter-Wave Radar

    Lingsheng Li1, Weiqing Bai2, Chong Han2,*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1613-1640, 2024, DOI:10.32604/cmc.2024.056073 - 15 October 2024
    Abstract Gestures are one of the most natural and intuitive approach for human-computer interaction. Compared with traditional camera-based or wearable sensors-based solutions, gesture recognition using the millimeter wave radar has attracted growing attention for its characteristics of contact-free, privacy-preserving and less environment-dependence. Although there have been many recent studies on hand gesture recognition, the existing hand gesture recognition methods still have recognition accuracy and generalization ability shortcomings in short-range applications. In this paper, we present a hand gesture recognition method named multiscale feature fusion (MSFF) to accurately identify micro hand gestures. In MSFF, not only the More >

  • Open AccessOpen Access

    ARTICLE

    Graph Attention Residual Network Based Routing and Fault-Tolerant Scheduling Mechanism for Data Flow in Power Communication Network

    Zhihong Lin1, Zeng Zeng2, Yituan Yu2, Yinlin Ren1, Xuesong Qiu1,*, Jinqian Chen1
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1641-1665, 2024, DOI:10.32604/cmc.2024.055802 - 15 October 2024
    Abstract For permanent faults (PF) in the power communication network (PCN), such as link interruptions, the time-sensitive networking (TSN) relied on by PCN, typically employs spatial redundancy fault-tolerance methods to keep service stability and reliability, which often limits TSN scheduling performance in fault-free ideal states. So this paper proposes a graph attention residual network-based routing and fault-tolerant scheduling mechanism (GRFS) for data flow in PCN, which specifically includes a communication system architecture for integrated terminals based on a cyclic queuing and forwarding (CQF) model and fault recovery method, which reduces the impact of faults by simplified… More >

  • Open AccessOpen Access

    ARTICLE

    Adaptive Update Distribution Estimation under Probability Byzantine Attack

    Gang Long, Zhaoxin Zhang*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1667-1685, 2024, DOI:10.32604/cmc.2024.052082 - 15 October 2024
    Abstract The secure and normal operation of distributed networks is crucial for accurate parameter estimation. However, distributed networks are frequently susceptible to Byzantine attacks. Considering real-life scenarios, this paper investigates a probability Byzantine (PB) attack, utilizing a Bernoulli distribution to simulate the attack probability. Historically, additional detection mechanisms are used to mitigate such attacks, leading to increased energy consumption and burdens on distributed nodes, consequently diminishing operational efficiency. Differing from these approaches, an adaptive updating distributed estimation algorithm is proposed to mitigate the impact of PB attacks. In the proposed algorithm, a penalty strategy is initially More >

  • Open AccessOpen Access

    ARTICLE

    NCCMF: Non-Collaborative Continuous Monitoring Framework for Container-Based Cloud Runtime Status

    Tao Zheng1, Wenyi Tang1,2,4,*, Xingshu Chen1,3,4, Changxiang Shen1,3,4
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1687-1701, 2024, DOI:10.32604/cmc.2024.056141 - 15 October 2024
    Abstract The security performance of cloud services is a key factor influencing users’ selection of Cloud Service Providers (CSPs). Continuous monitoring of the security status of cloud services is critical. However, existing research lacks a practical framework for such ongoing monitoring. To address this gap, this paper proposes the first Non-Collaborative Container-Based Cloud Service Operation State Continuous Monitoring Framework (NCCMF), based on relevant standards. NCCMF operates without the CSP’s collaboration by: 1) establishing a scalable supervisory index system through the identification of security responsibilities for each role, and 2) designing a Continuous Metrics Supervision Protocol (CMA) More >

  • Open AccessOpen Access

    ARTICLE

    Data-Driven Decision-Making for Bank Target Marketing Using Supervised Learning Classifiers on Imbalanced Big Data

    Fahim Nasir1, Abdulghani Ali Ahmed1,*, Mehmet Sabir Kiraz1, Iryna Yevseyeva1, Mubarak Saif2
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1703-1728, 2024, DOI:10.32604/cmc.2024.055192 - 15 October 2024
    Abstract Integrating machine learning and data mining is crucial for processing big data and extracting valuable insights to enhance decision-making. However, imbalanced target variables within big data present technical challenges that hinder the performance of supervised learning classifiers on key evaluation metrics, limiting their overall effectiveness. This study presents a comprehensive review of both common and recently developed Supervised Learning Classifiers (SLCs) and evaluates their performance in data-driven decision-making. The evaluation uses various metrics, with a particular focus on the Harmonic Mean Score (F-1 score) on an imbalanced real-world bank target marketing dataset. The findings indicate… More >

  • Open AccessOpen Access

    ARTICLE

    Efficient Real-Time Devices Based on Accelerometer Using Machine Learning for HAR on Low-Performance Microcontrollers

    Manh-Tuyen Vi1, Duc-Nghia Tran2, Vu Thi Thuong3,4, Nguyen Ngoc Linh5,*, Duc-Tan Tran1,*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1729-1756, 2024, DOI:10.32604/cmc.2024.055511 - 15 October 2024
    Abstract Analyzing physical activities through wearable devices is a promising research area for improving health assessment. This research focuses on the development of an affordable and real-time Human Activity Recognition (HAR) system designed to operate on low-performance microcontrollers. The system utilizes data from a body-worn accelerometer to recognize and classify human activities, providing a cost-effective, easy-to-use, and highly accurate solution. A key challenge addressed in this study is the execution of efficient motion recognition within a resource-constrained environment. The system employs a Random Forest (RF) classifier, which outperforms Gradient Boosting Decision Trees (GBDT), Support Vector Machines… More >

  • Open AccessOpen Access

    ARTICLE

    A Discrete Multi-Objective Squirrel Search Algorithm for Energy-Efficient Distributed Heterogeneous Permutation Flowshop with Variable Processing Speed

    Liang Zeng1,2,3, Ziyang Ding1, Junyang Shi1, Shanshan Wang1,2,3,*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1757-1787, 2024, DOI:10.32604/cmc.2024.055574 - 15 October 2024
    Abstract In the manufacturing industry, reasonable scheduling can greatly improve production efficiency, while excessive resource consumption highlights the growing significance of energy conservation in production. This paper studies the problem of energy-efficient distributed heterogeneous permutation flowshop problem with variable processing speed (DHPFSP-VPS), considering both the minimum makespan and total energy consumption (TEC) as objectives. A discrete multi-objective squirrel search algorithm (DMSSA) is proposed to solve the DHPFSP-VPS. DMSSA makes four improvements based on the squirrel search algorithm. Firstly, in terms of the population initialization strategy, four hybrid initialization methods targeting different objectives are proposed to enhance… More >

  • Open AccessOpen Access

    ARTICLE

    An Efficient Long Short-Term Memory and Gated Recurrent Unit Based Smart Vessel Trajectory Prediction Using Automatic Identification System Data

    Umar Zaman1, Junaid Khan2, Eunkyu Lee1,3, Sajjad Hussain4, Awatef Salim Balobaid5, Rua Yahya Aburasain5, Kyungsup Kim1,2,*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1789-1808, 2024, DOI:10.32604/cmc.2024.056222 - 15 October 2024
    Abstract Maritime transportation, a cornerstone of global trade, faces increasing safety challenges due to growing sea traffic volumes. This study proposes a novel approach to vessel trajectory prediction utilizing Automatic Identification System (AIS) data and advanced deep learning models, including Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Bidirectional LSTM (DBLSTM), Simple Recurrent Neural Network (SimpleRNN), and Kalman Filtering. The research implemented rigorous AIS data preprocessing, encompassing record deduplication, noise elimination, stationary simplification, and removal of insignificant trajectories. Models were trained using key navigational parameters: latitude, longitude, speed, and heading. Spatiotemporal aware processing through trajectory segmentation… More >

  • Open AccessOpen Access

    ARTICLE

    Mural Anomaly Region Detection Algorithm Based on Hyperspectral Multiscale Residual Attention Network

    Bolin Guo1,2, Shi Qiu1,*, Pengchang Zhang1, Xingjia Tang3
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1809-1833, 2024, DOI:10.32604/cmc.2024.056706 - 15 October 2024
    (This article belongs to the Special Issue: Artificial Neural Networks and its Applications)
    Abstract Mural paintings hold significant historical information and possess substantial artistic and cultural value. However, murals are inevitably damaged by natural environmental factors such as wind and sunlight, as well as by human activities. For this reason, the study of damaged areas is crucial for mural restoration. These damaged regions differ significantly from undamaged areas and can be considered abnormal targets. Traditional manual visual processing lacks strong characterization capabilities and is prone to omissions and false detections. Hyperspectral imaging can reflect the material properties more effectively than visual characterization methods. Thus, this study employs hyperspectral imaging… More >

  • Open AccessOpen Access

    ARTICLE

    V2I Physical Layer Security Beamforming with Antenna Hardware Impairments under RIS Assistance

    Zerong Tang, Tiecheng Song*, Jing Hu
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1835-1854, 2024, DOI:10.32604/cmc.2024.056983 - 15 October 2024
    (This article belongs to the Special Issue: Advanced Communication and Networking Technologies for Internet of Things and Internet of Vehicles)
    Abstract The Internet of Vehicles (IoV) will carry a large amount of security and privacy-related data, which makes the secure communication between the IoV terminals increasingly critical. This paper studies the joint beamforming for physical-layer security transmission in the coexistence of Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communication with Reconfigurable Intelligent Surface (RIS) assistance, taking into account hardware impairments. A communication model for physical-layer security transmission is established when the eavesdropping user is present and the base station antenna has hardware impairments assisted by RIS. Based on this model, we propose to maximize the V2I physical-layer security… More >

  • Open AccessOpen Access

    ARTICLE

    Integrating Ontology-Based Approaches with Deep Learning Models for Fine-Grained Sentiment Analysis

    Longgang Zhao1, Seok-Won Lee2,*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1855-1877, 2024, DOI:10.32604/cmc.2024.056215 - 15 October 2024
    Abstract Although sentiment analysis is pivotal to understanding user preferences, existing models face significant challenges in handling context-dependent sentiments, sarcasm, and nuanced emotions. This study addresses these challenges by integrating ontology-based methods with deep learning models, thereby enhancing sentiment analysis accuracy in complex domains such as film reviews and restaurant feedback. The framework comprises explicit topic recognition, followed by implicit topic identification to mitigate topic interference in subsequent sentiment analysis. In the context of sentiment analysis, we develop an expanded sentiment lexicon based on domain-specific corpora by leveraging techniques such as word-frequency analysis and word embedding. More >

  • Open AccessOpen Access

    ARTICLE

    Research on Maneuver Decision-Making of Multi-Agent Adversarial Game in a Random Interference Environment

    Shiguang Hu1,2, Le Ru1,2,*, Bo Lu1,2, Zhenhua Wang3, Xiaolin Zhao1,2, Wenfei Wang1,2, Hailong Xi1,2
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1879-1903, 2024, DOI:10.32604/cmc.2024.056110 - 15 October 2024
    (This article belongs to the Special Issue: Advanced Data Science Technology for Intelligent Decision Systems)
    Abstract The strategy evolution process of game players is highly uncertain due to random emergent situations and other external disturbances. This paper investigates the issue of strategy interaction and behavioral decision-making among game players in simulated confrontation scenarios within a random interference environment. It considers the possible risks that random disturbances may pose to the autonomous decision-making of game players, as well as the impact of participants’ manipulative behaviors on the state changes of the players. A nonlinear mathematical model is established to describe the strategy decision-making process of the participants in this scenario. Subsequently, the… More >

Per Page:

Share Link