Home / Journals / CMES / Vol.42, No.2, 2009
Special lssues
Table of Content
  • Open AccessOpen Access

    ARTICLE

    Compact Modelling of Electric Arc Furnace Electrodes for Vibration Analysis, Detection and Suppression

    E. Brusa1, E. Franceschinis2, S. Morsut2
    CMES-Computer Modeling in Engineering & Sciences, Vol.42, No.2, pp. 75-106, 2009, DOI:10.3970/cmes.2009.042.075
    Abstract Electrodes motion and positioning are critical issues of the Electric Arc Furnace (EAF) operation in steelmaking process. During the melting process electrode is exposed to some impulsive and harmonic forces, superimposing to the structure's static loading. Unfortunately, structural vibration may interact with the electric arc regulation, because of the dynamic resonance. Instability in the furnace power supplying and dangerous electrode breakage may occur as a consequence of those dynamic effects. In this paper the dynamic behaviour of a real EAF structure is discussed and some numerical models are proposed. Available experimental data, collected by a monitoring system on a real… More >

  • Open AccessOpen Access

    ARTICLE

    A fast Monte-Carlo Solver for Phonon Transport in Nanostructured Semiconductors

    Mei-Jiau Huang1, Tung-Chun Tsai1, Liang-Chun Liu1,2, Ming-shan Jeng2, Chang-Chung Yang2
    CMES-Computer Modeling in Engineering & Sciences, Vol.42, No.2, pp. 107-130, 2009, DOI:10.3970/cmes.2009.042.107
    Abstract We develop a Monte-Carlo simulator for phonon transport in nanostructured semiconductors, which solves the phonon Boltzmann transport equation under the gray medium approximation. Proper physical models for the phonon transmission/reflection at an interface between two different materials and proper numerical boundary conditions are designed and implemented carefully. Most of all, we take advantage of geometric symmetry that exists in a system to reduce the computational amount. The validity and accuracy of the proposed MC solver was successfully verified via a 1D transient conduction problem and the cross-plane (1D) and in-plane (2D) phonon transport problems associated with Si/Ge superlattice thin films. More >

  • Open AccessOpen Access

    ARTICLE

    High-Fidelity Tetrahedral Mesh Generation from Medical Imaging Data for Fluid-Structure Interaction Analysis of Cerebral Aneurysms

    Yongjie Zhang1, Wenyan Wang1, Xinghua Liang1, Yuri Bazilevs2, Ming-Chen Hsu2, Trond Kvamsdal3, Reidar Brekken4, Jørgen Isaksen5
    CMES-Computer Modeling in Engineering & Sciences, Vol.42, No.2, pp. 131-150, 2009, DOI:10.3970/cmes.2009.042.131
    Abstract This paper describes a comprehensive and high-fidelity finite element meshing approach for patient-specific arterial geometries from medical imaging data, with emphasis on cerebral aneurysm configurations. The meshes contain both the blood volume and solid arterial wall, and are compatible at the fluid-solid interface. There are four main stages for this meshing method: 1) Image segmentation and geometric model construction; 2) Tetrahedral mesh generation for the fluid volume using the octree-based method; 3) Mesh quality improvement stage, in which edge-contraction, pillowing, optimization, geometric flow smoothing, and mesh cutting are applied to the fluid mesh; and 4) Mesh generation for the blood… More >

  • Open AccessOpen Access

    ARTICLE

    Generalized Extrapolation for Computation of Hypersingular Integrals in Boundary Element Methods

    Jin Li1, Ji-ming Wu2, De-hao Yu1
    CMES-Computer Modeling in Engineering & Sciences, Vol.42, No.2, pp. 151-176, 2009, DOI:10.3970/cmes.2009.042.151
    Abstract The trapezoidal rule for the computation of Hadamard finite-part integrals in boundary element methods is discussed, and the asymptotic expansion of error function is obtained. A series to approach the singular point is constructed and the convergence rate is proved. Based on the asymptotic expansion of the error functional, algorithm with theoretical analysis of the generalized extrapolation are given. Some examples show that the numerical results coincide with the theoretic analysis very well. More >

Per Page:

Share Link