Home / Journals / OR / Vol.27, No.2, 2019
  • Open Access

    ARTICLE

    Liquiritigenin Inhibits Colorectal Cancer Proliferation, Invasion, and Epithelial-to-Mesenchymal Transition by Decreasing Expression of Runt-Related Transcription Factor 2

    Fan-Chun Meng, Jun-Kai Lin
    Oncology Research, Vol.27, No.2, pp. 139-146, 2019, DOI:10.3727/096504018X15185747911701
    Abstract Inhibition of tumor metastasis is one of the most important purposes in colorectal cancer (CRC) treatment. This study aimed to explore the effects of liquiritigenin, a flavonoid extracted from the roots of Glycyrrhiza uralensis Fisch, on HCT116 cell proliferation, invasion, and epithelial-to-mesenchymal transition (EMT). We found that liquiritigenin significantly inhibited HCT116 cell proliferation, invasion, and the EMT process, but had no influence on cell apoptosis. Moreover, liquiritigenin remarkably reduced the expression of runt-related transcription factor 2 (Runx2) in HCT116 cells. Overexpression of Runx2 obviously reversed the liquiritigenininduced invasion and EMT inhibition. Furthermore, liquiritigenin inactivated the phosphoinositide 3-kinase/ protein kinase B… More >

  • Open Access

    ARTICLE

    miR-26b Mimic Inhibits Glioma Proliferation In Vitro and In Vivo Suppressing COX-2 Expression

    Zheng-Gang Chen*, Chuan-Yi Zheng*, Wang-Qing Cai, Da-Wei Li*, Fu-Yue Ye*, Jian Zhou*, Ran Wu*, Kun Yang*
    Oncology Research, Vol.27, No.2, pp. 147-155, 2019, DOI:10.3727/096504017X15021536183517
    Abstract Glioma is the most common malignant tumor of the nervous system. Studies have shown the microRNA-26b (miR-26b)/cyclooxygenase-2 (COX-2) axis in the development and progression in many tumor cells. Our study aims to investigate the effect and mechanism of the miR-26b/COX-2 axis in glioma. Decreased expression of miR-26b with increased levels of COX-2 was found in glioma tissues compared with matched normal tissues. A strong negative correlation was observed between the level of miR-26b and COX-2 in 30 glioma tissues. The miR-26b was then overexpressed by transfecting a miR-26b mimic into U-373 cells. The invasive cell number and wound closing rate… More >

  • Open Access

    ARTICLE

    miR-363-3p Inhibits Osteosarcoma Cell Proliferation and Invasion via Targeting SOX4

    Kejun Wang*1, Lin Yan*1, Fen Lu
    Oncology Research, Vol.27, No.2, pp. 157-163, 2019, DOI:10.3727/096504018X15190861873459
    Abstract miR-363-3p has been shown to suppress tumor growth and metastasis in various human cancers. However, the function of miR-363-3p in osteosarcoma (OS) has not been determined. In our study, we found that the expression of miR-363-3p was significantly downregulated in OS tissues compared with adjacent normal tissues. miR-363-3p expression was associated with the poor overall survival rate of OS patients. Moreover, we found that overexpression of miR-363-3p markedly inhibited the proliferation, migration, and invasion of U2OS and MG63 cells. Moreover, we found that SOX4 was a direct target of miR-363-3p in OS cells. Overexpression of miR-363-3p significantly inhibited the expression… More >

  • Open Access

    ARTICLE

    miR-30c Impedes Glioblastoma Cell Proliferation and Migration by Targeting SOX9

    Shihui Liu, Xiuxiu Li, Sujing Zhuang
    Oncology Research, Vol.27, No.2, pp. 165-171, 2019, DOI:10.3727/096504018X15193506006164
    Abstract miR-30c has been acknowledged as a tumor suppressor in various human cancers, such as ovarian cancer, gastric cancer, and prostate cancer. However, the role of miR-30c in glioblastoma (GBM) needs to be investigated. In our study, we found that the expression of miR-30c was significantly downregulated in GBM tissues and cell lines. We found that overexpression of miR-30c inhibited cellular proliferation of GBM cells in vitro and in vivo. More GBM cells were arrested in the G0 phase after miR-30c overexpression. Moreover, we showed that miR-30c overexpression suppressed the migration and invasion of GBM cells. Mechanistically, we found that SOX9… More >

  • Open Access

    ARTICLE

    H19 Facilitates Tongue Squamous Cell Carcinoma Migration and Invasion via Sponging miR-let-7

    Ni Kou*1, Sha Liu*1, Xiaojie Li*, Wuwei Li*, Weijian Zhong*, Lin Gui*, Songling Chai*, Xiang Ren*, Risu Na*, Tao Zeng, Huiying Liu*
    Oncology Research, Vol.27, No.2, pp. 173-182, 2019, DOI:10.3727/096504018X15202945197589
    Abstract The long noncoding RNA (lncRNA) H19 has been described to participate in the metastasis of various tumors. Nevertheless, whether H19 promotes or impedes tongue squamous cell carcinoma (TSCC) cell migration and invasion remains controversial. Here we found that the expression of H19 was elevated in TSCC tissues compared with adjacent normal tissues. Moreover, we demonstrated that the expression of H19 was higher in metastasized tumors compared with unmetastasized tumors. Consistently, TSCC cells express higher levels of H19 than human squamous cells. Subsequently, depletion of H19 impaired the migration and invasion abilities of TSCC cells. Mechanistically, we demonstrated that H19 functions… More >

  • Open Access

    ARTICLE

    MicroRNA-377 Targets Zinc Finger E-box-Binding Homeobox 2 to Inhibit Cell Proliferation and Invasion of Cervical Cancer

    Cong Ye*, Yubo Hu, Junrong Wang*
    Oncology Research, Vol.27, No.2, pp. 183-192, 2019, DOI:10.3727/096504018X15201124340860
    Abstract A large number of microRNAs (miRNAs) are aberrantly expressed in cervical cancer and play crucial roles in the onset and progression of cervical cancer by acting as either an oncogene or a tumor suppressor. Therefore, investigation of the expression, biological roles, and underlying mechanisms of miRNAs in cervical cancer might provide valuable therapeutic targets in the treatment for patients with this disease. In this study, miRNA- 377 (miR-377) was downregulated in cervical cancer tissues and cell lines. Decreased miR-377 expression was strongly correlated with the International Federation of Gynecology and Obstetrics (FIGO) stage, lymph node metastasis, and distant metastasis in… More >

  • Open Access

    ARTICLE

    Emodin Inhibits Colon Cancer Cell Invasion and Migration by Suppressing Epithelial–Mesenchymal Transition via the Wnt/b-Catenin Pathway

    Juan Gu*, Chang-fu Cui, Li Yang, Ling Wang*, Xue-hua Jiang*
    Oncology Research, Vol.27, No.2, pp. 193-202, 2019, DOI:10.3727/096504018X15150662230295
    Abstract Colon cancer (CC) is the third most common cancer worldwide. Emodin is an anthraquinone-active substance that has the ability to affect tumor progression. Our study aims to explore the effects and the relevant mechanism of emodin on the invasion and migration of CC in vitro and in vivo. In our study, we found that emodin inhibited the invasion and migration abilities of RKO cells and decreased the expression of matrix metalloproteinase-7 (MMP-7), MMP-9, and vascular endothelial growth factor (VEGF) in a dose-dependent manner. Further research suggested that emodin inhibited EMT by increasing the mRNA level of E-cadherin and decreasing the… More >

  • Open Access

    ARTICLE

    Adjuvant Chemotherapy Following Surgical Resection Improves Survival in Patients With Early Stage Small Cell Lung Cancer

    Yuanshan Yao, Yinjie Zhou, Zhenhua Yang, Hongbo Huang, Haibo Shen
    Oncology Research, Vol.27, No.2, pp. 203-210, 2019, DOI:10.3727/096504018X15202953107093
    Abstract The purpose of this study was to determine the effects of resection coupled with standard chemotherapy on the survival prognosis of patients with early stage small cell lung carcinoma (SCLC). Patients (n=110) with mediastinal lymph node-negative SCLC were enrolled in this study. The baseline clinical data of patients with surgery were retrospectively reviewed. Overall survival (OS) and progression-free survival (PFS) were measured by Kaplan–Meier and log-rank test analyses. Ninety-eight patients received mediastinoscopy biopsy, and pulmonary lobectomy or sublobar resection, and 67 patients underwent adjuvant chemotherapy after pulmonary lobectomy. Adjuvant chemotherapy after surgical intervention was associated with longer OS (median OS:… More >

  • Open Access

    ARTICLE

    Thrombospondin 1 Triggers Osteosarcoma Cell Metastasis and Tumor Angiogenesis

    Yue Kui Jian1, Huan Ye Zhu1, Xing Lin Wu, Bo Li
    Oncology Research, Vol.27, No.2, pp. 211-218, 2019, DOI:10.3727/096504018X15208993118389
    Abstract Osteosarcomas, especially those with metastatic or unresectable disease, have limited treatment options. The antitumor effects of pharmacologic inhibitors of angiogenesis in osteosarcomas are hampered in patients by the rapid development of tumor resistance, notably through increased invasiveness and accelerated metastasis. Here we demonstrated that thrombospondin 1 (TSP-1) is a potent inhibitor of the growth and metastasis of the osteosarcoma cell line MG-63. Moreover, we demonstrate that upregulation of TSP-1 facilitated expression of vasculostatin in MG-63 cells. In angiogenesis assays, overexpression of TSP-1 inhibited MG-63 cells and induced tube formation of human umbilical vein endothelial cells (HUVECs) in a CD36-dependent fashion.… More >

  • Open Access

    ARTICLE

    Long Noncoding RNA FOXC2-AS1 Predicts Poor Survival in Breast Cancer Patients and Promotes Cell Proliferation

    Haisong Yang*, Tengxiang Chen, Shu Xu, Shiyong Zhang*, Mengmeng Zhang*
    Oncology Research, Vol.27, No.2, pp. 219-226, 2019, DOI:10.3727/096504018X15213126075068
    Abstract Breast cancer (BC) is the most common malignant tumor in women. Recently, long noncoding RNAs (lncRNAs) have been proposed as critical regulators in biological processes, including tumorigenesis. FOXC2-AS1, a single antisense oligonucleotide RNA transcribed from the negative strand of forkhead box protein C2 (FOXC2), has been identified as an oncogene in osteosarcoma. In the present study, we investigated the prognosis value and biological role of FOXC2-AS1 in BC. Our findings revealed that FOXC2-AS1 was significantly increased in BC tissues and cell lines, and Kaplan–Meier survival analysis indicated that a high level of FOXC2-AS1 was associated with poor prognosis of BC… More >

  • Open Access

    ARTICLE

    miR-449a Suppresses Tumor Growth, Migration, and Invasion in Non-Small Cell Lung Cancer by Targeting a HMGB1-Mediated NF-kB Signaling Pathway

    Dandan Wu*1, Jun Liu†1, Jianliang Chen*, Haiyan He*, Hang Ma*, Xuedong Lv*
    Oncology Research, Vol.27, No.2, pp. 227-235, 2019, DOI:10.3727/096504018X15213089759999
    Abstract MicroRNAs (miRNAs) have been reported to be involved in many human cancers and tumor progression. The dysregulation of miR-449a is found in many types of malignancies and is associated with tumor growth, migration, and invasion. However, its expression and function in non-small cell lung cancer (NSCLC) still remains unclear. In our study, miR-449a was found to be downregulated in both NSCLC tissues and cell lines, and low miR-449a expression was obviously associated with tumor differentiation, TMN stage, and poor overall survival (OS). Moreover, we demonstrated that miR-449a could inhibit tumor proliferation, migration, and invasion in NSCLC. We also confirmed that… More >

  • Open Access

    ARTICLE

    Experimental and In Silico Analysis of Cordycepin and its Derivatives as Endometrial Cancer Treatment

    Pedro Fong*1, Cheng N. Ao*†1, Kai I. Tou*, Ka M. Huang*, Chi C. Cheong*, Li R. Meng*
    Oncology Research, Vol.27, No.2, pp. 237-251, 2019, DOI:10.3727/096504018X15235274183790
    Abstract The aim of this study was to investigate the inhibition effects of cordycepin and its derivatives on endometrial cancer cell growth. Cytotoxicity MTT assays, clonogenic assays, and flow cytometry were used to observe the effects on apoptosis and regulation of the cell cycle of Ishikawa cells under various concentrations of cordycepin, cisplatin, and combinations of the two. Validated in silico docking simulations were performed on 31 cordycepin derivatives against adenosine deaminase (ADA) to predict their binding affinities and hence their potential tendency to be metabolized by ADA. Cordycepin has a significant dose-dependent inhibitory effect on cell proliferation. The combination of… More >

  • Open Access

    ARTICLE

    miR-1284 Inhibits the Growth and Invasion of Breast Cancer Cells by Targeting ZIC2

    Pengcheng Zhang*, Fang Yang, Qin Luo, Daxue Yan§, Shengrong Sun*
    Oncology Research, Vol.27, No.2, pp. 253-260, 2019, DOI:10.3727/096504018X15242763477504
    Abstract miR-1284 has been reported to inhibit tumor growth in some human cancers, including lung cancer, ovarian cancer, and gastric cancer. Whether it regulates breast cancer progression remains elusive. In this study, we found that miR-1284 was downregulated in breast cancer tissues and cell lines compared to normal control cells. Moreover, we showed that overexpression of miR-1284 significantly inhibited the proliferation, migration, and invasion of breast cancer cells while promoting apoptosis. In terms of mechanism, we found that transcription factor ZIC2 was a target of miR-1284 in breast cancer cells. Through the luciferase reporter assay, we demonstrated their direct interaction. RT-qPCR… More >

  • Open Access

    ARTICLE

    miR-223-5p Suppresses Tumor Growth and Metastasis in Non-Small Cell Lung Cancer by Targeting E2F8

    Liyan Dou*1, Kaiyu Han†1, Mochao Xiao*, Fuzhen Lv
    Oncology Research, Vol.27, No.2, pp. 261-268, 2019, DOI:10.3727/096504018X15219188894056
    Abstract miR-223-5p has been demonstrated to regulate the development and progression of various cancers, such as hepatocellular carcinoma, breast cancer, and gastric carcinoma. However, the role of miR-223-5p in nonsmall cell lung cancer (NSCLC) requires further investigation. In this study, we found that the expression of miR-223-5p was significantly downregulated in NSCLC tissues and cell lines. Moreover, the expression level of miR-223-5p is negatively correlated with the malignance of NSCLC. We found that overexpression of miR-223-5p remarkably suppressed the proliferation of NSCLC cells in vitro and in vivo. miR-223-5p overexpression also led to reduced migration and invasion in NSCLC cells. Mechanistically,… More >

  • Open Access

    ARTICLE

    MicroRNA 615-3p Inhibits the Tumor Growth and Metastasis of NSCLC via Inhibiting IGF2

    Jiangtao Liu*, Yanli Jia*, Lijuan Jia*, Tingting Li, Lei Yang, Gongwen Zhang
    Oncology Research, Vol.27, No.2, pp. 269-279, 2019, DOI:10.3727/096504018X15215019227688
    Abstract MicroRNAs are essential regulators of cancer-associated genes at the posttranscriptional level, and their expression is altered in cancer tissues. Herein we sought to identify the regulation of miR-615-3p in NSCLC progression and its mechanism. miR-615-3p expression was significantly downregulated in NSCLC tissue compared to control normal tissue. Exogenous overexpression of miR-615-3p inhibited the growth and metastasis of NSCLC cells. In addition, the in vivo mouse xenograft model showed that overexpression of miR- 615-3p inhibited NSCLC growth and lung metastasis, whereas decreased expression of miR-615-3p caused an opposite outcome. Furthermore, we revealed that insulin-like growth factor 2 (IGF2) expression was negatively… More >

  • Open Access

    ERRATUM

    MicroRNA-200a Suppresses Cell Invasion and Migration by Directly Targeting GAB1 in Hepatocellular Carcinoma

    Jianlin Wang*1, Wenjie Song*1, Weiwei Shen†1, Xisheng Yang*, Wei Sun*, Sshibin Qu*, Runze Shang*, Ben Ma*, Meng Pu*, Kaishan Tao*, Kefeng Dou*, Haimin Li*
    Oncology Research, Vol.27, No.2, pp. 281-282, 2019, DOI:10.3727/096504019X15476499940873
    Abstract MicroRNA-200a (miR-200a) is frequently downregulated in most cancer types and plays an important role in carcinogenesis and cancer progression. In this study, we determined that miR-200a was downregulated in hepatocellular carcinoma (HCC) tissues and cell lines, consistent with the results of our previous study. Because a previous study suggested that downregulation of miR-200a is correlated with HCC metastasis, we aimed to elucidate the mechanism underlying the role of miR-200a in metastasis in HCC. Here we observed that overexpression of miR-200a resulted in suppression of HCC metastatic ability, including HCC cell migration, invasion, and metastasis, in vitro and in vivo. Furthermore,… More >

Share Link

WeChat scan