Special Issue "Vibration Control and Utilization"

Submission Deadline: 01 February 2023
Submit to Special Issue
Guest Editors
Prof. Tao Yang, Northwestern Polytechnical University, China
Prof. Dongmei Huang, Xidian University, China
Prof. Shengxi Zhou, Northwestern Polytechnical University, China

Summary

Vibration is a common phenomenon in nature, which can bring many benefits to human beings, but also brings harm. Beneficial vibrations can be converted into other forms of usable energy, produce beautiful notes, transmit signals, etc., which will bring great benefits to the improvement of human living standards and the development of military technology. However, when the vibration exceeds a certain limit, it will cause damage to human health and facilities, making the instrument and equipment unable to work normally. For example, advanced aircraft such as artificial earth satellites, unmanned aerial vehicles, manned spacecraft, space probes, armed helicopters, strategic missiles, etc., have a serious hazard to the stability of the aircraft system due to the vibration and noise caused by the complex external environment. This makes the system unable to realize the effective positioning of the target during the flight, and the anti-jamming efficiency is poor. Converting these harmful vibrations into energy can not only eliminate harmful vibrations to protect equipment, but also capture energy to power microelectronic devices.


Potential topics include but are not limited to the following:


Ø  Fundamental theory of vibration

Ø  Unmanned aerial vehicles

Ø  Aeroelasticity and aerospace computing

Ø  Fluid-structure interaction mechanism and applications

Ø  Theoretical and experimental investigation of vibration control and utilization

Ø  Design, modeling, and optimization of vibration structure

Ø  Vibration and noise control in aerospace engineering

Ø  Vibration analysis and control in Intelligent Transportation Engineering

Ø  Analysis of nonlinear vibration, random vibration and vibration with time-delayed

Ø  Advanced methods for vibration control and utilization

Ø  Novel design and mechanical behavior of vibration isolation, nonlinear energy sink, and vibration energy harvesting

Ø  Metamaterials mechanism and design for vibration control and utilization


Keywords
Vibration analysis; vibration control; vibration utilization; aeroelasticity

Published Papers
  • Numerical Simulation Research on Static Aeroelastic Effect of the Transonic Aileron of a High Aspect Ratio Aircraf
  • Abstract The static aeroelastic effect of aircraft ailerons with high aspect ratio at transonic velocity is investigated in this paper by the CFD/CSD fluid-structure coupling numerical simulation. The influences of wing static aeroelasticity and the ‘scissor opening’ gap width between aileron control surface and the main wing surface on aileron efficiency are mainly explored. The main purpose of this paper is to provide technical support for the wind tunnel experimental model of aileron static aeroelasticity. The results indicate that the flight dynamic pressure has a great influence on the static aeroelastic effect of ailerons, and the greater the dynamic pressure, the… More
  •   Views:157       Downloads:50        Download PDF