Home / Journals / CMC / Vol.86, No.3, 2026
Special Issues
Table of Content
cover

On the Cover

This paper proposes a hybrid detection framework that utilizes extended Berkeley Packet Filter (eBPF) to detect malicious containers at runtime. The framework combines flow-based network metadata and host-based system call traces collected with low overhead via eBPF. By integrating multiple data sources, it resolves classification ambiguities inherent in single-source approaches and improves detection reliability by accurately distinguishing between malicious and benign containers using machine learning.
The cover image was created with AI-generated content via Google Gemini 3, and it contains no copyrighted elements or misleading representations.

View this paper

  • Open AccessOpen Access

    REVIEW

    A Survey of Federated Learning: Advances in Architecture, Synchronization, and Security Threats

    Faisal Mahmud1, Fahim Mahmud2, Rashedur M. Rahman1,*
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073519 - 12 January 2026
    Abstract Federated Learning (FL) has become a leading decentralized solution that enables multiple clients to train a model in a collaborative environment without directly sharing raw data, making it suitable for privacy-sensitive applications such as healthcare, finance, and smart systems. As the field continues to evolve, the research field has become more complex and scattered, covering different system designs, training methods, and privacy techniques. This survey is organized around the three core challenges: how the data is distributed, how models are synchronized, and how to defend against attacks. It provides a structured and up-to-date review of… More >

  • Open AccessOpen Access

    REVIEW

    A Review on Fault Diagnosis Methods of Gas Turbine

    Tao Zhang1,*, Hailun Wang1, Tianyue Wang1, Tian Tian2
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072696 - 12 January 2026
    (This article belongs to the Special Issue: Signal Processing for Fault Diagnosis)
    Abstract The critical components of gas turbines suffer from prolonged exposure to factors such as thermal oxidation, mechanical wear, and airflow disturbances during prolonged operation. These conditions can lead to a series of issues, including mechanical faults, air path malfunctions, and combustion irregularities. Traditional model-based approaches face inherent limitations due to their inability to handle nonlinear problems, natural factors, measurement uncertainties, fault coupling, and implementation challenges. The development of artificial intelligence algorithms has provided an effective solution to these issues, sparking extensive research into data-driven fault diagnosis methodologies. The review mechanism involved searching IEEE Xplore, ScienceDirect,… More >

  • Open AccessOpen Access

    REVIEW

    A Comprehensive Survey on Blockchain-Enabled Techniques and Federated Learning for Secure 5G/6G Networks: Challenges, Opportunities, and Future Directions

    Muhammad Asim1,*, Abdelhamied A. Ateya1, Mudasir Ahmad Wani1,2, Gauhar Ali1, Mohammed ElAffendi1, Ahmed A. Abd El-Latif1, Reshma Siyal3
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070684 - 12 January 2026
    Abstract The growing developments in 5G and 6G wireless communications have revolutionized communications technologies, providing faster speeds with reduced latency and improved connectivity to users. However, it raises significant security challenges, including impersonation threats, data manipulation, distributed denial of service (DDoS) attacks, and privacy breaches. Traditional security measures are inadequate due to the decentralized and dynamic nature of next-generation networks. This survey provides a comprehensive review of how Federated Learning (FL), Blockchain, and Digital Twin (DT) technologies can collectively enhance the security of 5G and 6G systems. Blockchain offers decentralized, immutable, and transparent mechanisms for securing More >

  • Open AccessOpen Access

    REVIEW

    Intrusion Detection Systems in Industrial Control Systems: Landscape, Challenges and Opportunities

    Tong Wu, Dawei Zhou, Qingyu Ou*, Fang Luo
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073482 - 12 January 2026
    Abstract The increasing interconnection of modern industrial control systems (ICSs) with the Internet has enhanced operational efficiency, but also made these systems more vulnerable to cyberattacks. This heightened exposure has driven a growing need for robust ICS security measures. Among the key defences, intrusion detection technology is critical in identifying threats to ICS networks. This paper provides an overview of the distinctive characteristics of ICS network security, highlighting standard attack methods. It then examines various intrusion detection methods, including those based on misuse detection, anomaly detection, machine learning, and specialised requirements. This paper concludes by exploring More >

  • Open AccessOpen Access

    REVIEW

    AI-Generated Text Detection: A Comprehensive Review of Active and Passive Approaches

    Lingyun Xiang1,*, Nian Li2, Yuling Liu3, Jiayong Hu1
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073347 - 12 January 2026
    Abstract The rapid advancement of large language models (LLMs) has driven the pervasive adoption of AI-generated content (AIGC), while also raising concerns about misinformation, academic misconduct, biased or harmful content, and other risks. Detecting AI-generated text has thus become essential to safeguard the authenticity and reliability of digital information. This survey reviews recent progress in detection methods, categorizing approaches into passive and active categories based on their reliance on intrinsic textual features or embedded signals. Passive detection is further divided into surface linguistic feature-based and language model-based methods, whereas active detection encompasses watermarking-based and semantic retrieval-based More >

  • Open AccessOpen Access

    REVIEW

    An Overview of Segmentation Techniques in Breast Cancer Detection: From Classical to Hybrid Model

    Hanifah Rahmi Fajrin1,2, Se Dong Min1,3,*
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072609 - 12 January 2026
    (This article belongs to the Special Issue: Computer Vision and Image Processing: Feature Selection, Image Enhancement and Recognition)
    Abstract Accurate segmentation of breast cancer in mammogram images plays a critical role in early diagnosis and treatment planning. As research in this domain continues to expand, various segmentation techniques have been proposed across classical image processing, machine learning (ML), deep learning (DL), and hybrid/ensemble models. This study conducts a systematic literature review using the PRISMA methodology, analyzing 57 selected articles to explore how these methods have evolved and been applied. The review highlights the strengths and limitations of each approach, identifies commonly used public datasets, and observes emerging trends in model integration and clinical relevance. More >

  • Open AccessOpen Access

    ARTICLE

    Traffic Vision: UAV-Based Vehicle Detection and Traffic Pattern Analysis via Deep Learning Classifier

    Mohammed Alnusayri1, Ghulam Mujtaba2, Nouf Abdullah Almujally3, Shuoa S. Aitarbi4, Asaad Algarni5, Ahmad Jalal2,6, Jeongmin Park7,*
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071804 - 12 January 2026
    (This article belongs to the Special Issue: Advances in Object Detection and Recognition)
    Abstract This paper presents a unified Unmanned Aerial Vehicle-based (UAV-based) traffic monitoring framework that integrates vehicle detection, tracking, counting, motion prediction, and classification in a modular and co-optimized pipeline. Unlike prior works that address these tasks in isolation, our approach combines You Only Look Once (YOLO) v10 detection, ByteTrack tracking, optical-flow density estimation, Long Short-Term Memory-based (LSTM-based) trajectory forecasting, and hybrid Speeded-Up Robust Feature (SURF) + Gray-Level Co-occurrence Matrix (GLCM) feature engineering with VGG16 classification. Upon the validation across datasets (UAVDT and UAVID) our framework achieved a detection accuracy of 94.2%, and 92.3% detection accuracy when More >

  • Open AccessOpen Access

    ARTICLE

    A Dual-Stream Framework for Landslide Segmentation with Cross-Attention Enhancement and Gated Multimodal Fusion

    Md Minhazul Islam1,2, Yunfei Yin1,2,*, Md Tanvir Islam1,2, Zheng Yuan1,2, Argho Dey1,2
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072550 - 12 January 2026
    Abstract Automatic segmentation of landslides from remote sensing imagery is challenging because traditional machine learning and early CNN-based models often fail to generalize across heterogeneous landscapes, where segmentation maps contain sparse and fragmented landslide regions under diverse geographical conditions. To address these issues, we propose a lightweight dual-stream siamese deep learning framework that integrates optical and topographical data fusion with an adaptive decoder, guided multimodal fusion, and deep supervision. The framework is built upon the synergistic combination of cross-attention, gated fusion, and sub-pixel upsampling within a unified dual-stream architecture specifically optimized for landslide segmentation, enabling efficient… More >

  • Open AccessOpen Access

    ARTICLE

    A Real Time YOLO Based Container Grapple Slot Detection and Classification System

    Chen-Chiung Hsieh1,*, Chun-An Chen1, Wei-Hsin Huang2
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072514 - 12 January 2026
    (This article belongs to the Special Issue: Development and Application of Deep Learning based Object Detection)
    Abstract Container transportation is pivotal in global trade due to its efficiency, safety, and cost-effectiveness. However, structural defects—particularly in grapple slots—can result in cargo damage, financial loss, and elevated safety risks, including container drops during lifting operations. Timely and accurate inspection before and after transit is therefore essential. Traditional inspection methods rely heavily on manual observation of internal and external surfaces, which are time-consuming, resource-intensive, and prone to subjective errors. Container roofs pose additional challenges due to limited visibility, while grapple slots are especially vulnerable to wear from frequent use. This study proposes a two-stage automated… More >

  • Open AccessOpen Access

    ARTICLE

    Defending against Topological Information Probing for Online Decentralized Web Services

    Xinli Hao1, Qingyuan Gong2, Yang Chen1,*
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073155 - 12 January 2026
    (This article belongs to the Special Issue: Cyberspace Mapping and Anti-Mapping Techniques)
    Abstract Topological information is very important for understanding different types of online web services, in particular, for online social networks (OSNs). People leverage such information for various applications, such as social relationship modeling, community detection, user profiling, and user behavior prediction. However, the leak of such information will also pose severe challenges for user privacy preserving due to its usefulness in characterizing users. Large-scale web crawling-based information probing is a representative way for obtaining topological information of online web services. In this paper, we explore how to defend against topological information probing for online web services,… More >

  • Open AccessOpen Access

    ARTICLE

    Integration of Large Language Models (LLMs) and Static Analysis for Improving the Efficacy of Security Vulnerability Detection in Source Code

    José Armando Santas Ciavatta, Juan Ramón Bermejo Higuera*, Javier Bermejo Higuera, Juan Antonio Sicilia Montalvo, Tomás Sureda Riera, Jesús Pérez Melero
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.074566 - 12 January 2026
    Abstract As artificial Intelligence (AI) continues to expand exponentially, particularly with the emergence of generative pre-trained transformers (GPT) based on a transformer’s architecture, which has revolutionized data processing and enabled significant improvements in various applications. This document seeks to investigate the security vulnerabilities detection in the source code using a range of large language models (LLM). Our primary objective is to evaluate the effectiveness of Static Application Security Testing (SAST) by applying various techniques such as prompt persona, structure outputs and zero-shot. To the selection of the LLMs (CodeLlama 7B, DeepSeek coder 7B, Gemini 1.5 Flash,… More >

  • Open AccessOpen Access

    ARTICLE

    Beyond Wi-Fi 7: Enhanced Decentralized Wireless Local Area Networks with Federated Reinforcement Learning

    Rashid Ali1,*, Alaa Omran Almagrabi2,3
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070224 - 12 January 2026
    Abstract Wi-Fi technology has evolved significantly since its introduction in 1997, advancing to Wi-Fi 6 as the latest standard, with Wi-Fi 7 currently under development. Despite these advancements, integrating machine learning into Wi-Fi networks remains challenging, especially in decentralized environments with multiple access points (mAPs). This paper is a short review that summarizes the potential applications of federated reinforcement learning (FRL) across eight key areas of Wi-Fi functionality, including channel access, link adaptation, beamforming, multi-user transmissions, channel bonding, multi-link operation, spatial reuse, and multi-basic servic set (multi-BSS) coordination. FRL is highlighted as a promising framework for More >

  • Open AccessOpen Access

    ARTICLE

    Hybrid Runtime Detection of Malicious Containers Using eBPF

    Jeongeun Ryu1, Riyeong Kim2, Soomin Lee1, Sumin Kim1, Hyunwoo Choi1,2, Seongmin Kim1,2,*
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.074871 - 12 January 2026
    Abstract As containerized environments become increasingly prevalent in cloud-native infrastructures, the need for effective monitoring and detection of malicious behaviors has become critical. Malicious containers pose significant risks by exploiting shared host resources, enabling privilege escalation, or launching large-scale attacks such as cryptomining and botnet activities. Therefore, developing accurate and efficient detection mechanisms is essential for ensuring the security and stability of containerized systems. To this end, we propose a hybrid detection framework that leverages the extended Berkeley Packet Filter (eBPF) to monitor container activities directly within the Linux kernel. The framework simultaneously collects flow-based network… More >

  • Open AccessOpen Access

    ARTICLE

    IoT-Assisted Cloud Data Sharing with Revocation and Equality Test under Identity-Based Proxy Re-Encryption

    Han-Yu Lin, Tung-Tso Tsai*, Yi-Chuan Wang
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073234 - 12 January 2026
    Abstract Cloud services, favored by many enterprises due to their high flexibility and easy operation, are widely used for data storage and processing. However, the high latency, together with transmission overheads of the cloud architecture, makes it difficult to quickly respond to the demands of IoT applications and local computation. To make up for these deficiencies in the cloud, fog computing has emerged as a critical role in the IoT applications. It decentralizes the computing power to various lower nodes close to data sources, so as to achieve the goal of low latency and distributed processing.… More >

  • Open AccessOpen Access

    ARTICLE

    Design of Virtual Driving Test Environment for Collecting and Validating Bad Weather SiLS Data Based on Multi-Source Images Using DCU with V2X-Car Edge Cloud

    Sun Park*, JongWon Kim
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072865 - 12 January 2026
    (This article belongs to the Special Issue: Advancing Edge-Cloud Systems with Software-Defined Networking and Intelligence-Driven Approaches)
    Abstract In real-world autonomous driving tests, unexpected events such as pedestrians or wild animals suddenly entering the driving path can occur. Conducting actual test drives under various weather conditions may also lead to dangerous situations. Furthermore, autonomous vehicles may operate abnormally in bad weather due to limitations of their sensors and GPS. Driving simulators, which replicate driving conditions nearly identical to those in the real world, can drastically reduce the time and cost required for market entry validation; consequently, they have become widely used. In this paper, we design a virtual driving test environment capable of More >

  • Open AccessOpen Access

    ARTICLE

    Machine Learning Based Simulation, Synthesis, and Characterization of Zinc Oxide/Graphene Oxide Nanocomposite for Energy Storage Applications

    Tahir Mahmood1,*, Muhammad Waseem Ashraf1,*, Shahzadi Tayyaba2, Muhammad Munir3, Babiker M. A. Abdel-Banat3, Hassan Ali Dinar3
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072436 - 12 January 2026
    (This article belongs to the Special Issue: Advanced Modeling of Smart and Composite Materials and Structures)
    Abstract Artificial intelligence (AI) based models have been used to predict the structural, optical, mechanical, and electrochemical properties of zinc oxide/graphene oxide nanocomposites. Machine learning (ML) models such as Artificial Neural Networks (ANN), Support Vector Regression (SVR), Multilayer Perceptron (MLP), and hybrid, along with fuzzy logic tools, were applied to predict the different properties like wavelength at maximum intensity (444 nm), crystallite size (17.50 nm), and optical bandgap (2.85 eV). While some other properties, such as energy density, power density, and charge transfer resistance, were also predicted with the help of datasets of 1000 (80:20). In… More >

  • Open AccessOpen Access

    ARTICLE

    Research on Deformation Mechanism of Rolled AZ31B Magnesium Alloy during Tension by VPSC Model Computational Simulation

    Xun Chen1, Jinbao Lin1,2,*, Zai Wang1
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072495 - 12 January 2026
    Abstract This work investigates the effects of deformation mechanisms on the mechanical properties and anisotropy of rolled AZ31B magnesium alloy under uniaxial tension, combining experimental characterization with Visco-Plastic Self Consistent (VPSC) modeling. The research focuses particularly on anisotropic mechanical responses along transverse direction (TD) and rolling direction (RD). Experimental measurements and computational simulations consistently demonstrate that prismatic <a> slip activation significantly reduces the strain hardening rate during the initial stage of tensile deformation. By suppressing the activation of specific deformation mechanisms along RD and TD, the tensile mechanical behavior of the magnesium alloy was further investigated. More >

  • Open AccessOpen Access

    ARTICLE

    A Hybrid Experimental-Numerical Framework for Identifying Viscoelastic Parameters of 3D-Printed Polyurethane Samples: Cyclic Tests, Creep/Relaxation and Inverse Finite Element Analysis

    Nikita Golovkin1,2, Olesya Nikulenkova3, Vsevolod Pobezhimov1, Alexander Nesmelov1, Sergei Chvalun1, Fedor Sorokin3, Arthur Krupnin1,3,*
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073161 - 12 January 2026
    (This article belongs to the Special Issue: Perspective Materials for Science and Industrial: Modeling and Simulation)
    Abstract This study presents and verifies a hybrid methodology for reliable determination of parameters in structural rheological models (Zener, Burgers, and Maxwell) describing the viscoelastic behavior of polyurethane specimens manufactured using extrusion-based 3D printing. Through comprehensive testing, including cyclic compression at strain rates ranging from 0.12 to 120 mm/min (0%–15% strain) and creep/relaxation experiments (10%–30% strain), the lumped parameters were independently determined using both analytical and numerical solutions of the models’ differential equations, followed by cross-verification in additional experiments. Numerical solutions for creep and relaxation problems were obtained using finite element analysis, with the three-parameter Mooney-Rivlin… More >

    Graphic Abstract

    A Hybrid Experimental-Numerical Framework for Identifying Viscoelastic Parameters of 3D-Printed Polyurethane Samples: Cyclic Tests, Creep/Relaxation and Inverse Finite Element Analysis

  • Open AccessOpen Access

    ARTICLE

    Data-Driven Prediction and Optimization of Mechanical Properties and Vibration Damping in Cast Iron–Granite-Epoxy Hybrid Composites

    Girish Hariharan1, Vinyas1, Gowrishankar Mandya Chennegowda1, Nitesh Kumar1, Shiva Kumar1, Deepak Doreswamy2, Subraya Krishna Bhat1,*
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073772 - 12 January 2026
    (This article belongs to the Special Issue: Advanced Computational Modeling and Simulations for Engineering Structures and Multifunctional Materials: Bridging Theory and Practice)
    Abstract This study presents a framework involving statistical modeling and machine learning to accurately predict and optimize the mechanical and damping properties of hybrid granite–epoxy (G–E) composites reinforced with cast iron (CI) filler particles. Hybrid G–E composite with added cast iron (CI) filler particles enhances stiffness, strength, and vibration damping, offering enhanced performance for vibration-sensitive engineering applications. Unlike conventional approaches, this work simultaneously employs Artificial Neural Networks (ANN) for high-accuracy property prediction and Response Surface Methodology (RSM) for in-depth analysis of factor interactions and optimization. A total of 24 experimental test data sets of varying input… More >

  • Open AccessOpen Access

    ARTICLE

    Numerical Investigation of Porosity and Aggregate Volume Ratio Effects on the Mechanical Behavior of Lightweight Aggregate Concrete

    Safwan Al-sayed1, Xi Wang1, Yijiang Peng1,*, Esraa Hyarat2, Ahmad Ali AlZubi3
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.074068 - 12 January 2026
    (This article belongs to the Special Issue: Computational Modeling of Mechanical Behavior of Advanced Materials)
    Abstract In modern construction, Lightweight Aggregate Concrete (LWAC) has been recognized as a vital material of concern because of its unique properties, such as reduced density and improved thermal insulation. Despite the extensive knowledge regarding its macroscopic properties, there is a wide knowledge gap in understanding the influence of microscale parameters like aggregate porosity and volume ratio on the mechanical response of LWAC. This study aims to bridge this knowledge gap, spurred by the need to enhance the predictability and applicability of LWAC in various construction environments. With the help of advanced numerical methods, including the… More >

  • Open AccessOpen Access

    ARTICLE

    Surrogate-Based Dimensional Optimization of a Polymeric Roller for Ore Belt Conveyors Considering Viscoelastic Effects

    Rafiq Said Dias Jabour, Marco Antonio Luersen*, Euclides Alexandre Bernardelli
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072266 - 12 January 2026
    (This article belongs to the Special Issue: Advanced Modeling of Smart and Composite Materials and Structures)
    Abstract The roller is one of the fundamental elements of ore belt conveyor systems since it supports, guides, and directs material on the belt. This component comprises a body (the external tube) that rotates around a fixed shaft supported by easels. The external tube and shaft of rollers used in ore conveyor belts are mostly made of steel, resulting in high mass, hindering maintenance and replacement. Aiming to achieve mass reduction, we conducted a structural optimization of a roller with a polymeric external tube (hereafter referred to as a polymeric roller), seeking the optimal values for… More >

  • Open AccessOpen Access

    ARTICLE

    An Improved PID Controller Based on Artificial Neural Networks for Cathodic Protection of Steel in Chlorinated Media

    José Arturo Ramírez-Fernández1, Henevith G. Méndez-Figueroa1, Sebastián Ossandón2,*, Ricardo Galván-Martínez3, Miguel Ángel Hernández-Pérez3, Ricardo Orozco-Cruz3
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072707 - 12 January 2026
    (This article belongs to the Special Issue: Applications of Neural Networks in Materials)
    Abstract In this study, artificial neural networks (ANNs) were implemented to determine design parameters for an impressed current cathodic protection (ICCP) prototype. An ASTM A36 steel plate was tested in 3.5% NaCl solution, seawater, and NS4 using electrochemical impedance spectroscopy (EIS) to monitor the evolution of the substrate surface, which affects the current required to reach the protection potential (Eprot). Experimental data were collected as training datasets and analyzed using statistical methods, including box plots and correlation matrices. Subsequently, ANNs were applied to predict the current demand at different exposure times, enabling the estimation of electrochemical More >

  • Open AccessOpen Access

    ARTICLE

    Atomistic Insights into Aluminium–Boron Nitride Nanolayered Interconnects for High-Performance VLSI Systems

    Mallikarjun P. Y.1, Rame Gowda D. N.1, Trisha J. K.1, Varshini M.1, Poornesha S. Shetty1, Mandar Jatkar1,*, Arpan Shah2
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072507 - 12 January 2026
    Abstract As circuit feature sizes approach the nanoscale, traditional Copper (Cu) interconnects face significant hurdles posed by rising resistance-capacitance (RC) delay, electromigration, and high power dissipation. These limitations impose constraints on the scalability and reliability of future semiconductor technologies. Our paper describes the new Vertical multilayer Aluminium Boron Nitride Nanoribbon (AlBN) interconnect structure, integrated with Density functional theory (DFT) using first-principles calculations. This study explores AlBN-based nanostructures with doping of 1Cu, 2Cu, 1Fe (Iron), and 2Fe for the application of Very Large Scale Integration (VLSI) interconnects. The AlBN structure utilized the advantages of vertical multilayer interconnects… More >

  • Open AccessOpen Access

    ARTICLE

    KPA-ViT: Key Part-Level Attention Vision Transformer for Foreign Body Classification on Coal Conveyor Belt

    Haoxuanye Ji*, Zhiliang Chen, Pengfei Jiang, Ziyue Wang, Ting Yu, Wei Zhang
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071880 - 12 January 2026
    (This article belongs to the Special Issue: Advances in Efficient Vision Transformers: Architectures, Optimization, and Applications)
    Abstract Foreign body classification on coal conveyor belts is a critical component of intelligent coal mining systems. Previous approaches have primarily utilized convolutional neural networks (CNNs) to effectively integrate spatial and semantic information. However, the performance of CNN-based methods remains limited in classification accuracy, primarily due to insufficient exploration of local image characteristics. Unlike CNNs, Vision Transformer (ViT) captures discriminative features by modeling relationships between local image patches. However, such methods typically require a large number of training samples to perform effectively. In the context of foreign body classification on coal conveyor belts, the limited availability… More >

  • Open AccessOpen Access

    ARTICLE

    VMFD: Virtual Meetings Fatigue Detector Using Eye Polygon Area and Dlib Shape Indicator

    Hafsa Sidaq1, Lei Wang1, Sghaier Guizani2,*, Hussain Haider3, Ateeq Ur Rehman4,*, Habib Hamam5,6,7
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071254 - 12 January 2026
    Abstract Numerous sectors, such as education, the IT sector, and corporate organizations, transitioned to virtual meetings after the COVID-19 crisis. Organizations now seek to assess participants’ fatigue levels in online meetings to remain competitive. Instructors cannot effectively monitor every individual in a virtual environment, which raises significant concerns about participant fatigue. Our proposed system monitors fatigue, identifying attentive and drowsy individuals throughout the online session. We leverage Dlib’s pre-trained facial landmark detector and focus on the eye landmarks only, offering a more detailed analysis for predicting eye opening and closing of the eyes, rather than focusing… More >

  • Open AccessOpen Access

    ARTICLE

    Graph Guide Diffusion Solvers with Noises for Travelling Salesman Problem

    Yan Kong1, Xinpeng Guo2, Chih-Hsien Hsia3,4,*
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071269 - 12 January 2026
    Abstract With the development of technology, diffusion model-based solvers have shown significant promise in solving Combinatorial Optimization (CO) problems, particularly in tackling Non-deterministic Polynomial-time hard (NP-hard) problems such as the Traveling Salesman Problem (TSP). However, existing diffusion model-based solvers typically employ a fixed, uniform noise schedule (e.g., linear or cosine annealing) across all training instances, failing to fully account for the unique characteristics of each problem instance. To address this challenge, we present Graph-Guided Diffusion Solvers (GGDS), an enhanced method for improving graph-based diffusion models. GGDS leverages Graph Neural Networks (GNNs) to capture graph structural information… More >

  • Open AccessOpen Access

    ARTICLE

    Deep Feature-Driven Hybrid Temporal Learning and Instance-Based Classification for DDoS Detection in Industrial Control Networks

    Haohui Su1, Xuan Zhang1,*, Lvjun Zheng1, Xiaojie Shen2, Hua Liao1
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072093 - 12 January 2026
    Abstract Distributed Denial-of-Service (DDoS) attacks pose severe threats to Industrial Control Networks (ICNs), where service disruption can cause significant economic losses and operational risks. Existing signature-based methods are ineffective against novel attacks, and traditional machine learning models struggle to capture the complex temporal dependencies and dynamic traffic patterns inherent in ICN environments. To address these challenges, this study proposes a deep feature-driven hybrid framework that integrates Transformer, BiLSTM, and KNN to achieve accurate and robust DDoS detection. The Transformer component extracts global temporal dependencies from network traffic flows, while BiLSTM captures fine-grained sequential dynamics. The learned… More >

  • Open AccessOpen Access

    ARTICLE

    Secured-FL: Blockchain-Based Defense against Adversarial Attacks on Federated Learning Models

    Bello Musa Yakubu1,*, Nor Shahida Mohd Jamail 2, Rabia Latif 2, Seemab Latif 3
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072426 - 12 January 2026
    (This article belongs to the Special Issue: Advances in IoT Security: Challenges, Solutions, and Future Applications)
    Abstract Federated Learning (FL) enables joint training over distributed devices without data exchange but is highly vulnerable to attacks by adversaries in the form of model poisoning and malicious update injection. This work proposes Secured-FL, a blockchain-based defensive framework that combines smart contract–based authentication, clustering-driven outlier elimination, and dynamic threshold adjustment to defend against adversarial attacks. The framework was implemented on a private Ethereum network with a Proof-of-Authority consensus algorithm to ensure tamper-resistant and auditable model updates. Large-scale simulation on the Cyber Data dataset, under up to 50% malicious client settings, demonstrates Secured-FL achieves 6%–12% higher accuracy, More >

  • Open AccessOpen Access

    ARTICLE

    FAIR-DQL: Fairness-Aware Deep Q-Learning for Enhanced Resource Allocation and RIS Optimization in High-Altitude Platform Networks

    Muhammad Ejaz1, Muhammad Asim2,*, Mudasir Ahmad Wani2,3, Kashish Ara Shakil4,*
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072464 - 12 January 2026
    Abstract The integration of High-Altitude Platform Stations (HAPS) with Reconfigurable Intelligent Surfaces (RIS) represents a critical advancement for next-generation wireless networks, offering unprecedented opportunities for ubiquitous connectivity. However, existing research reveals significant gaps in dynamic resource allocation, joint optimization, and equitable service provisioning under varying channel conditions, limiting practical deployment of these technologies. This paper addresses these challenges by proposing a novel Fairness-Aware Deep Q-Learning (FAIR-DQL) framework for joint resource management and phase configuration in HAPS-RIS systems. Our methodology employs a comprehensive three-tier algorithmic architecture integrating adaptive power control, priority-based user scheduling, and dynamic learning mechanisms. More >

  • Open AccessOpen Access

    ARTICLE

    EARAS: An Efficient, Anonymous, and Robust Authentication Scheme for Smart Homes

    Muntaham Inaam Hashmi1, Muhammad Ayaz Khan2, Khwaja Mansoor ul Hassan1, Suliman A. Alsuhibany3,*, Ainur Abduvalova4, Asfandyar Khan5
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071452 - 12 January 2026
    Abstract Cyber-criminals target smart connected devices for spyware distribution and security breaches, but existing Internet of Things (IoT) security standards are insufficient. Major IoT industry players prioritize market share over security, leading to insecure smart products. Traditional host-based protection solutions are less effective due to limited resources. Overcoming these challenges and enhancing the security of IoT Devices requires a security design at the network level that uses lightweight cryptographic parameters. In order to handle control, administration, and security concerns in traditional networking, the Gateway Node offers a contemporary networking architecture. By managing all network-level computations and… More >

  • Open AccessOpen Access

    ARTICLE

    A Blockchain-Based Hybrid Framework for Secure and Scalable Electronic Health Record Management in In-Patient Follow-Up Tracking

    Ahsan Habib Siam1, Md. Ehsanul Haque1, Fahmid Al Farid2, Anindita Sutradhar3, Jia Uddin4,*, Sarina Mansor2,*
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.069718 - 12 January 2026
    Abstract As healthcare systems increasingly embrace digitalization, effective management of electronic health records (EHRs) has emerged as a critical priority, particularly in inpatient settings where data sensitivity and real-time access are paramount. Traditional EHR systems face significant challenges, including unauthorized access, data breaches, and inefficiencies in tracking follow-up appointments, which heighten the risk of misdiagnosis and medication errors. To address these issues, this research proposes a hybrid blockchain-based solution for securely managing EHRs, specifically designed as a framework for tracking inpatient follow-ups. By integrating QR code-enabled data access with a blockchain architecture, this innovative approach enhances… More >

  • Open AccessOpen Access

    ARTICLE

    Visual Detection Algorithms for Counter-UAV in Low-Altitude Air Defense

    Minghui Li1, Hongbo Li1,*, Jiaqi Zhu2, Xupeng Zhang1
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072406 - 12 January 2026
    (This article belongs to the Special Issue: Advances in Object Detection: Methods and Applications)
    Abstract To address the challenge of real-time detection of unauthorized drone intrusions in complex low-altitude urban environments such as parks and airports, this paper proposes an enhanced MBS-YOLO (Multi-Branch Small Target Detection YOLO) model for anti-drone object detection, based on the YOLOv8 architecture. To overcome the limitations of existing methods in detecting small objects within complex backgrounds, we designed a C2f-Pu module with excellent feature extraction capability and a more compact parameter set, aiming to reduce the model’s computational complexity. To improve multi-scale feature fusion, we construct a Multi-Branch Feature Pyramid Network (MB-FPN) that employs a… More >

  • Open AccessOpen Access

    ARTICLE

    BearFusionNet: A Multi-Stream Attention-Based Deep Learning Framework with Explainable AI for Accurate Detection of Bearing Casting Defects

    Md. Ehsanul Haque1, Md. Nurul Absur2, Fahmid Al Farid3, Md Kamrul Siam4, Jia Uddin5,*, Hezerul Abdul Karim3,*
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071771 - 12 January 2026
    Abstract Manual inspection of onba earing casting defects is not realistic and unreliable, particularly in the case of some micro-level anomalies which lead to major defects on a large scale. To address these challenges, we propose BearFusionNet, an attention-based deep learning architecture with multi-stream, which merges both DenseNet201 and MobileNetV2 for feature extraction with a classification head inspired by VGG19. This hybrid design, figuratively beaming from one layer to another, extracts the enormity of representations on different scales, backed by a pre-preprocessing pipeline that brings defect saliency to the fore through contrast adjustment, denoising, and edge… More >

  • Open AccessOpen Access

    ARTICLE

    MDGET-MER: Multi-Level Dynamic Gating and Emotion Transfer for Multi-Modal Emotion Recognition

    Musheng Chen1,2, Qiang Wen1, Xiaohong Qiu1,2, Junhua Wu1,*, Wenqing Fu1
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071207 - 12 January 2026
    Abstract In multi-modal emotion recognition, excessive reliance on historical context often impedes the detection of emotional shifts, while modality heterogeneity and unimodal noise limit recognition performance. Existing methods struggle to dynamically adjust cross-modal complementary strength to optimize fusion quality and lack effective mechanisms to model the dynamic evolution of emotions. To address these issues, we propose a multi-level dynamic gating and emotion transfer framework for multi-modal emotion recognition. A dynamic gating mechanism is applied across unimodal encoding, cross-modal alignment, and emotion transfer modeling, substantially improving noise robustness and feature alignment. First, we construct a unimodal encoder More >

  • Open AccessOpen Access

    ARTICLE

    Privacy-Preserving Personnel Detection in Substations via Federated Learning with Dynamic Noise Adaptation

    Yuewei Tian1, Yang Su2, Yujia Wang1, Lisa Guo1, Xuyang Wu3,*, Lei Cao4, Fang Ren3
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072081 - 12 January 2026
    (This article belongs to the Special Issue: Advances in Object Detection and Recognition)
    Abstract This study addresses the risk of privacy leakage during the transmission and sharing of multimodal data in smart grid substations by proposing a three-tier privacy-preserving architecture based on asynchronous federated learning. The framework integrates blockchain technology, the InterPlanetary File System (IPFS) for distributed storage, and a dynamic differential privacy mechanism to achieve collaborative security across the storage, service, and federated coordination layers. It accommodates both multimodal data classification and object detection tasks, enabling the identification and localization of key targets and abnormal behaviors in substation scenarios while ensuring privacy protection. This effectively mitigates the single-point… More >

  • Open AccessOpen Access

    ARTICLE

    Blockchain and Smart Contracts with Barzilai-Borwein Intelligence for Industrial Cyber-Physical System

    Gowrishankar Jayaraman1, Ashok Kumar Munnangi2, Ramesh Sekaran3, Arunkumar Gopu3, Manikandan Ramachandran4,*
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071124 - 12 January 2026
    Abstract Industrial Cyber-Physical Systems (ICPSs) play a vital role in modern industries by providing an intellectual foundation for automated operations. With the increasing integration of information-driven processes, ensuring the security of Industrial Control Production Systems (ICPSs) has become a critical challenge. These systems are highly vulnerable to attacks such as denial-of-service (DoS), eclipse, and Sybil attacks, which can significantly disrupt industrial operations. This work proposes an effective protection strategy using an Artificial Intelligence (AI)-enabled Smart Contract (SC) framework combined with the Heterogeneous Barzilai–Borwein Support Vector (HBBSV) method for industrial-based CPS environments. The approach reduces run time… More >

  • Open AccessOpen Access

    ARTICLE

    : A Protocol Message Structure Reconstruction Method Based on Execution Slice Embedding

    Yuyao Huang, Hui Shu, Fei Kang*
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071552 - 12 January 2026
    Abstract Message structure reconstruction is a critical task in protocol reverse engineering, aiming to recover protocol field structures without access to source code. It enables important applications in network security, including malware analysis and protocol fuzzing. However, existing methods suffer from inaccurate field boundary delineation and lack hierarchical relationship recovery, resulting in imprecise and incomplete reconstructions. In this paper, we propose ProRE, a novel method for reconstructing protocol field structures based on program execution slice embedding. ProRE extracts code slices from protocol parsing at runtime, converts them into embedding vectors using a data flow-sensitive assembly language model, More >

  • Open AccessOpen Access

    ARTICLE

    Advanced Video Processing and Data Transmission Technology for Unmanned Ground Vehicles in the Internet of Battlefield Things (loBT)

    Tai Liu1,2, Mao Ye2,*, Feng Wu3, Chao Zhu2, Bo Chen2, Guoyan Zhang1,*
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072692 - 12 January 2026
    (This article belongs to the Special Issue: Smart Roads, Smarter Cars, Safety and Security: Evolution of Vehicular Ad Hoc Networks)
    Abstract With the continuous advancement of unmanned technology in various application domains, the development and deployment of blind-spot-free panoramic video systems have gained increasing importance. Such systems are particularly critical in battlefield environments, where advanced panoramic video processing and wireless communication technologies are essential to enable remote control and autonomous operation of unmanned ground vehicles (UGVs). However, conventional video surveillance systems suffer from several limitations, including limited field of view, high processing latency, low reliability, excessive resource consumption, and significant transmission delays. These shortcomings impede the widespread adoption of UGVs in battlefield settings. To overcome these… More >

  • Open AccessOpen Access

    ARTICLE

    Multi-Criteria Discovery of Communities in Social Networks Based on Services

    Karim Boudjebbour1,2, Abdelkader Belkhir1, Hamza Kheddar2,*
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071532 - 12 January 2026
    Abstract Identifying the community structure of complex networks is crucial to extracting insights and understanding network properties. Although several community detection methods have been proposed, many are unsuitable for social networks due to significant limitations. Specifically, most approaches depend mainly on user–user structural links while overlooking service-centric, semantic, and multi-attribute drivers of community formation, and they also lack flexible filtering mechanisms for large-scale, service-oriented settings. Our proposed approach, called community discovery-based service (CDBS), leverages user profiles and their interactions with consulted web services. The method introduces a novel similarity measure, global similarity interaction profile (GSIP), which… More >

  • Open AccessOpen Access

    ARTICLE

    Steel Surface Defect Detection via the Multiscale Edge Enhancement Method

    Yuanyuan Wang1,*, Yemeng Zhu1, Xiuchuan Chen1, Tongtong Yin1, Shiwei Su2
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072404 - 12 January 2026
    Abstract To solve the false detection and missed detection problems caused by various types and sizes of defects in the detection of steel surface defects, similar defects and background features, and similarities between different defects, this paper proposes a lightweight detection model named multiscale edge and squeeze-and-excitation attention detection network (MSESE), which is built upon the You Only Look Once version 11 nano (YOLOv11n). To address the difficulty of locating defect edges, we first propose an edge enhancement module (EEM), apply it to the process of multiscale feature extraction, and then propose a multiscale edge enhancement… More >

  • Open AccessOpen Access

    ARTICLE

    Deep Retraining Approach for Category-Specific 3D Reconstruction Models from a Single 2D Image

    Nour El Houda Kaiber1, Tahar Mekhaznia1, Akram Bennour1,*, Mohammed Al-Sarem2,3,*, Zakaria Lakhdara4, Fahad Ghaban2, Mohammad Nassef5,6
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070337 - 12 January 2026
    Abstract The generation of high-quality 3D models from single 2D images remains challenging in terms of accuracy and completeness. Deep learning has emerged as a promising solution, offering new avenues for improvements. However, building models from scratch is computationally expensive and requires large datasets. This paper presents a transfer-learning-based approach for category-specific 3D reconstruction from a single 2D image. The core idea is to fine-tune a pre-trained model on specific object categories using new, unseen data, resulting in specialized versions of the model that are better adapted to reconstruct particular objects. The proposed approach utilizes a… More >

  • Open AccessOpen Access

    ARTICLE

    From Budget-Aware Preferences to Optimal Composition: A Dual-Stage Framework for Wireless Energy Service Optimization

    Haotian Zhang, Jing Li*, Ming Zhu, Zhiyong Zhao, Hongli Su, Liming Sun
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072381 - 12 January 2026
    Abstract In the wireless energy transmission service composition optimization problem, a key challenge is accurately capturing users’ preferences for service criteria under complex influencing factors, and optimally selecting a composition solution under their budget constraints. Existing studies typically evaluate satisfaction solely based on energy transmission capacity, while overlooking critical factors such as price and trustworthiness of the provider, leading to a mismatch between optimization outcomes and user needs. To address this gap, we construct a user satisfaction evaluation model for multi-user and multi-provider scenarios, systematically incorporating service price, transmission capacity, and trustworthiness into the satisfaction assessment… More >

  • Open AccessOpen Access

    ARTICLE

    CAWASeg: Class Activation Graph Driven Adaptive Weight Adjustment for Semantic Segmentation

    Hailong Wang1, Minglei Duan2, Lu Yao3, Hao Li1,*
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072942 - 12 January 2026
    Abstract In image analysis, high-precision semantic segmentation predominantly relies on supervised learning. Despite significant advancements driven by deep learning techniques, challenges such as class imbalance and dynamic performance evaluation persist. Traditional weighting methods, often based on pre-statistical class counting, tend to overemphasize certain classes while neglecting others, particularly rare sample categories. Approaches like focal loss and other rare-sample segmentation techniques introduce multiple hyperparameters that require manual tuning, leading to increased experimental costs due to their instability. This paper proposes a novel CAWASeg framework to address these limitations. Our approach leverages Grad-CAM technology to generate class activation… More >

  • Open AccessOpen Access

    ARTICLE

    A Novel Semi-Supervised Multi-View Picture Fuzzy Clustering Approach for Enhanced Satellite Image Segmentation

    Pham Huy Thong1, Hoang Thi Canh2,3,*, Nguyen Tuan Huy4, Nguyen Long Giang1,*, Luong Thi Hong Lan4
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071776 - 12 January 2026
    (This article belongs to the Special Issue: Advances in Image Recognition: Innovations, Applications, and Future Directions)
    Abstract Satellite image segmentation plays a crucial role in remote sensing, supporting applications such as environmental monitoring, land use analysis, and disaster management. However, traditional segmentation methods often rely on large amounts of labeled data, which are costly and time-consuming to obtain, especially in large-scale or dynamic environments. To address this challenge, we propose the Semi-Supervised Multi-View Picture Fuzzy Clustering (SS-MPFC) algorithm, which improves segmentation accuracy and robustness, particularly in complex and uncertain remote sensing scenarios. SS-MPFC unifies three paradigms: semi-supervised learning, multi-view clustering, and picture fuzzy set theory. This integration allows the model to effectively… More >

  • Open AccessOpen Access

    ARTICLE

    FRF-BiLSTM: Recognising and Mitigating DDoS Attacks through a Secure Decentralized Feature Optimized Federated Learning Approach

    Sushruta Mishra1, Sunil Kumar Mohapatra2, Kshira Sagar Sahoo3, Anand Nayyar4, Tae-Kyung Kim5,*
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072493 - 12 January 2026
    (This article belongs to the Special Issue: Advances in Machine Learning and Artificial Intelligence for Intrusion Detection Systems)
    Abstract With an increase in internet-connected devices and a dependency on online services, the threat of Distributed Denial of Service (DDoS) attacks has become a significant concern in cybersecurity. The proposed system follows a multi-step process, beginning with the collection of datasets from different edge devices and network nodes. To verify its effectiveness, experiments were conducted using the CICDoS2017, NSL-KDD, and CICIDS benchmark datasets alongside other existing models. Recursive feature elimination (RFE) with random forest is used to select features from the CICDDoS2019 dataset, on which a BiLSTM model is trained on local nodes. Local models… More >

  • Open AccessOpen Access

    ARTICLE

    CASBA: Capability-Adaptive Shadow Backdoor Attack against Federated Learning

    Hongwei Wu*, Guojian Li, Hanyun Zhang, Zi Ye, Chao Ma
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071008 - 12 January 2026
    Abstract Federated Learning (FL) protects data privacy through a distributed training mechanism, yet its decentralized nature also introduces new security vulnerabilities. Backdoor attacks inject malicious triggers into the global model through compromised updates, posing significant threats to model integrity and becoming a key focus in FL security. Existing backdoor attack methods typically embed triggers directly into original images and consider only data heterogeneity, resulting in limited stealth and adaptability. To address the heterogeneity of malicious client devices, this paper proposes a novel backdoor attack method named Capability-Adaptive Shadow Backdoor Attack (CASBA). By incorporating measurements of clients’… More >

  • Open AccessOpen Access

    ARTICLE

    TopoMSG: A Topology-Aware Multi-Scale Graph Network for Social Bot Detection

    Junhui Xu1, Qi Wang1,*, Chichen Lin2, Weijian Fan3
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071661 - 12 January 2026
    Abstract Social bots are automated programs designed to spread rumors and misinformation, posing significant threats to online security. Existing research shows that the structure of a social network significantly affects the behavioral patterns of social bots: a higher number of connected components weakens their collaborative capabilities, thereby reducing their proportion within the overall network. However, current social bot detection methods still make limited use of topological features. Furthermore, both graph neural network (GNN)-based methods that rely on local features and those that leverage global features suffer from their own limitations, and existing studies lack an effective… More >

  • Open AccessOpen Access

    ARTICLE

    A Hybrid Deep Learning Approach for Real-Time Cheating Behaviour Detection in Online Exams Using Video Captured Analysis

    Dao Phuc Minh Huy1, Gia Nhu Nguyen1, Dac-Nhuong Le2,*
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070948 - 12 January 2026
    Abstract Online examinations have become a dominant assessment mode, increasing concerns over academic integrity. To address the critical challenge of detecting cheating behaviours, this study proposes a hybrid deep learning approach that combines visual detection and temporal behaviour classification. The methodology utilises object detection models—You Only Look Once (YOLOv12), Faster Region-based Convolutional Neural Network (RCNN), and Single Shot Detector (SSD) MobileNet—integrated with classification models such as Convolutional Neural Networks (CNN), Bidirectional Gated Recurrent Unit (Bi-GRU), and CNN-LSTM (Long Short-Term Memory). Two distinct datasets were used: the Online Exam Proctoring (EOP) dataset from Michigan State University and… More >

  • Open AccessOpen Access

    ARTICLE

    Research on Dynamic Scheduling Method for Hybrid Flow Shop Order Disturbance Based on IMOGWO Algorithm

    Feng Lv*, Huili Chu, Cheng Yang, Jiajie Zhang
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072915 - 12 January 2026
    (This article belongs to the Special Issue: Advances in Nature-Inspired and Metaheuristic Optimization Algorithms: Theory, Applications, and Emerging Trends)
    Abstract To address the issue that hybrid flow shop production struggles to handle order disturbance events, a dynamic scheduling model was constructed. The model takes minimizing the maximum makespan, delivery time deviation, and scheme deviation degree as the optimization objectives. An adaptive dynamic scheduling strategy based on the degree of order disturbance is proposed. An improved multi-objective Grey Wolf (IMOGWO) optimization algorithm is designed by combining the “job-machine” two-layer encoding strategy, the timing-driven two-stage decoding strategy, the opposition-based learning initialization population strategy, the POX crossover strategy, the dual-operation dynamic mutation strategy, and the variable neighborhood search… More >

  • Open AccessOpen Access

    ARTICLE

    Two-Stage LightGBM Framework for Cost-Sensitive Prediction of Impending Failures of Component X in Scania Trucks

    Si-Woo Kim, Yong Soo Kim*
    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073492 - 12 January 2026
    Abstract Predictive maintenance (PdM) is vital for ensuring the reliability, safety, and cost efficiency of heavy-duty vehicle fleets. However, real-world sensor data are often highly imbalanced, noisy, and temporally irregular, posing significant challenges to model robustness and deployment. Using multivariate time-series data from Scania trucks, this study proposes a novel PdM framework that integrates efficient feature summarization with cost-sensitive hierarchical classification. First, the proposed last_k_summary method transforms recent operational records into compact statistical and trend-based descriptors while preserving missingness, allowing LightGBM to leverage its inherent split rules without ad-hoc imputation. Then, a two-stage LightGBM framework is developed… More >

Per Page:

Share Link