CMCOpen Access

Computers, Materials & Continua

ISSN:1546-2218(print)
ISSN:1546-2226(online)
Publication Frequency:Monthly

  • Online
    Articles

    5191

  • on board
    editors

    250

Special lssues
Table of Content


About the Journal

Computers, Materials & Continua is a peer-reviewed Open Access journal that publishes all types of academic papers in the areas of computer networks, artificial intelligence, big data, software engineering, multimedia, cyber security, internet of things, materials genome, integrated materials science, and data analysis, modeling, designing and manufacturing of modern functional and multifunctional materials. This journal is published monthly by Tech Science Press.

Indexing and Abstracting

SCI: 2022 Impact Factor 3.1; Scopus CiteScore (Impact per Publication 2022): 5.0; SNIP (Source Normalized Impact per Paper 2022): 1.080; Ei Compendex; Cambridge Scientific Abstracts; INSPEC Databases; Science Navigator; EBSCOhost; ProQuest Central; Zentralblatt für Mathematik; Portico, etc.

  • Open Access

    ARTICLE

    Advanced Optimized Anomaly Detection System for IoT Cyberattacks Using Artificial Intelligence

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1525-1545, 2024, DOI:10.32604/cmc.2023.045794
    (This article belongs to this Special Issue: Advanced Data Mining Techniques: Security, Intelligent Systems and Applications)
    Abstract While emerging technologies such as the Internet of Things (IoT) have many benefits, they also pose considerable security challenges that require innovative solutions, including those based on artificial intelligence (AI), given that these techniques are increasingly being used by malicious actors to compromise IoT systems. Although an ample body of research focusing on conventional AI methods exists, there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures. To contribute to this nascent research stream, a novel AI-driven security system denoted as “AI2AI” is presented in this work. AI2AI employs AI techniques to… More >

  • Open Access

    ARTICLE

    Enhanced Differentiable Architecture Search Based on Asymptotic Regularization

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1547-1568, 2024, DOI:10.32604/cmc.2023.047489
    Abstract In differentiable search architecture search methods, a more efficient search space design can significantly improve the performance of the searched architecture, thus requiring people to carefully define the search space with different complexity according to various operations. Meanwhile rationalizing the search strategies to explore the well-defined search space will further improve the speed and efficiency of architecture search. With this in mind, we propose a faster and more efficient differentiable architecture search method, AllegroNAS. Firstly, we introduce a more efficient search space enriched by the introduction of two redefined convolution modules. Secondly, we utilize a more efficient architectural parameter regularization… More >

  • Open Access

    ARTICLE

    Multilevel Attention Unet Segmentation Algorithm for Lung Cancer Based on CT Images

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1569-1589, 2024, DOI:10.32604/cmc.2023.046821
    (This article belongs to this Special Issue: Deep Learning in Computer-Aided Diagnosis Based on Medical Image)
    Abstract Lung cancer is a malady of the lungs that gravely jeopardizes human health. Therefore, early detection and treatment are paramount for the preservation of human life. Lung computed tomography (CT) image sequences can explicitly delineate the pathological condition of the lungs. To meet the imperative for accurate diagnosis by physicians, expeditious segmentation of the region harboring lung cancer is of utmost significance. We utilize computer-aided methods to emulate the diagnostic process in which physicians concentrate on lung cancer in a sequential manner, erect an interpretable model, and attain segmentation of lung cancer. The specific advancements can be encapsulated as follows:… More >

  • Open Access

    ARTICLE

    Adaptive Segmentation for Unconstrained Iris Recognition

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1591-1609, 2024, DOI:10.32604/cmc.2023.043520
    (This article belongs to this Special Issue: Advances and Applications in Signal, Image and Video Processing)
    Abstract In standard iris recognition systems, a cooperative imaging framework is employed that includes a light source with a near-infrared wavelength to reveal iris texture, look-and-stare constraints, and a close distance requirement to the capture device. When these conditions are relaxed, the system’s performance significantly deteriorates due to segmentation and feature extraction problems. Herein, a novel segmentation algorithm is proposed to correctly detect the pupil and limbus boundaries of iris images captured in unconstrained environments. First, the algorithm scans the whole iris image in the Hue Saturation Value (HSV) color space for local maxima to detect the sclera region. The image… More >

  • Open Access

    ARTICLE

    An Energy Trading Method Based on Alliance Blockchain and Multi-Signature

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1611-1629, 2024, DOI:10.32604/cmc.2023.046698
    Abstract Blockchain, known for its secure encrypted ledger, has garnered attention in financial and data transfer realms, including the field of energy trading. However, the decentralized nature and identity anonymity of user nodes raise uncertainties in energy transactions. The broadcast consensus authentication slows transaction speeds, and frequent single-point transactions in multi-node settings pose key exposure risks without protective measures during user signing. To address these, an alliance blockchain scheme is proposed, reducing the resource-intensive identity verification among nodes. It integrates multi-signature functionality to fortify user resources and transaction security. A novel multi-signature process within this framework involves neutral nodes established through… More >

  • Open Access

    ARTICLE

    A Normalizing Flow-Based Bidirectional Mapping Residual Network for Unsupervised Defect Detection

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1631-1648, 2024, DOI:10.32604/cmc.2024.046924
    Abstract Unsupervised methods based on density representation have shown their abilities in anomaly detection, but detection performance still needs to be improved. Specifically, approaches using normalizing flows can accurately evaluate sample distributions, mapping normal features to the normal distribution and anomalous features outside it. Consequently, this paper proposes a Normalizing Flow-based Bidirectional Mapping Residual Network (NF-BMR). It utilizes pre-trained Convolutional Neural Networks (CNN) and normalizing flows to construct discriminative source and target domain feature spaces. Additionally, to better learn feature information in both domain spaces, we propose the Bidirectional Mapping Residual Network (BMR), which maps sample features to these two spaces… More >

    Graphic Abstract

    A Normalizing Flow-Based Bidirectional Mapping Residual Network for Unsupervised Defect Detection

  • Open Access

    ARTICLE

    Attention Guided Multi Scale Feature Fusion Network for Automatic Prostate Segmentation

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1649-1668, 2024, DOI:10.32604/cmc.2023.046883
    Abstract The precise and automatic segmentation of prostate magnetic resonance imaging (MRI) images is vital for assisting doctors in diagnosing prostate diseases. In recent years, many advanced methods have been applied to prostate segmentation, but due to the variability caused by prostate diseases, automatic segmentation of the prostate presents significant challenges. In this paper, we propose an attention-guided multi-scale feature fusion network (AGMSF-Net) to segment prostate MRI images. We propose an attention mechanism for extracting multi-scale features, and introduce a 3D transformer module to enhance global feature representation by adding it during the transition phase from encoder to decoder. In the… More >

  • Open Access

    ARTICLE

    Classification of Conversational Sentences Using an Ensemble Pre-Trained Language Model with the Fine-Tuned Parameter

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1669-1686, 2024, DOI:10.32604/cmc.2023.046963
    Abstract Sentence classification is the process of categorizing a sentence based on the context of the sentence. Sentence categorization requires more semantic highlights than other tasks, such as dependence parsing, which requires more syntactic elements. Most existing strategies focus on the general semantics of a conversation without involving the context of the sentence, recognizing the progress and comparing impacts. An ensemble pre-trained language model was taken up here to classify the conversation sentences from the conversation corpus. The conversational sentences are classified into four categories: information, question, directive, and commission. These classification label sequences are for analyzing the conversation progress and… More >

  • Open Access

    ARTICLE

    Cross-Project Software Defect Prediction Based on SMOTE and Deep Canonical Correlation Analysis

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1687-1711, 2024, DOI:10.32604/cmc.2023.046187
    Abstract Cross-Project Defect Prediction (CPDP) is a method that utilizes historical data from other source projects to train predictive models for defect prediction in the target project. However, existing CPDP methods only consider linear correlations between features (indicators) of the source and target projects. These models are not capable of evaluating non-linear correlations between features when they exist, for example, when there are differences in data distributions between the source and target projects. As a result, the performance of such CPDP models is compromised. In this paper, this paper proposes a novel CPDP method based on Synthetic Minority Oversampling Technique (SMOTE)… More >

  • Open Access

    ARTICLE

    Defect Detection Model Using Time Series Data Augmentation and Transformation

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1713-1730, 2024, DOI:10.32604/cmc.2023.046324
    Abstract Time-series data provide important information in many fields, and their processing and analysis have been the focus of much research. However, detecting anomalies is very difficult due to data imbalance, temporal dependence, and noise. Therefore, methodologies for data augmentation and conversion of time series data into images for analysis have been studied. This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance, temporal dependence, and robustness to noise. The method of data augmentation is set as the addition of noise. It involves adding Gaussian noise, with the noise… More >

  • Open Access

    ARTICLE

    Detecting APT-Exploited Processes through Semantic Fusion and Interaction Prediction

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1731-1754, 2024, DOI:10.32604/cmc.2023.045739
    Abstract Considering the stealthiness and persistence of Advanced Persistent Threats (APTs), system audit logs are leveraged in recent studies to construct system entity interaction provenance graphs to unveil threats in a host. Rule-based provenance graph APT detection approaches require elaborate rules and cannot detect unknown attacks, and existing learning-based approaches are limited by the lack of available APT attack samples or generally only perform graph-level anomaly detection, which requires lots of manual efforts to locate attack entities. This paper proposes an APT-exploited process detection approach called ThreatSniffer, which constructs the benign provenance graph from attack-free audit logs, fits normal system entity… More >

  • Open Access

    ARTICLE

    DGConv: A Novel Convolutional Neural Network Approach for Weld Seam Depth Image Detection

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1755-1771, 2024, DOI:10.32604/cmc.2023.047057
    Abstract We propose a novel image segmentation algorithm to tackle the challenge of limited recognition and segmentation performance in identifying welding seam images during robotic intelligent operations. Initially, to enhance the capability of deep neural networks in extracting geometric attributes from depth images, we developed a novel deep geometric convolution operator (DGConv). DGConv is utilized to construct a deep local geometric feature extraction module, facilitating a more comprehensive exploration of the intrinsic geometric information within depth images. Secondly, we integrate the newly proposed deep geometric feature module with the Fully Convolutional Network (FCN8) to establish a high-performance deep neural network algorithm… More >

  • Open Access

    ARTICLE

    Social Robot Detection Method with Improved Graph Neural Networks

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1773-1795, 2024, DOI:10.32604/cmc.2023.047130
    Abstract Social robot accounts controlled by artificial intelligence or humans are active in social networks, bringing negative impacts to network security and social life. Existing social robot detection methods based on graph neural networks suffer from the problem of many social network nodes and complex relationships, which makes it difficult to accurately describe the difference between the topological relations of nodes, resulting in low detection accuracy of social robots. This paper proposes a social robot detection method with the use of an improved neural network. First, social relationship subgraphs are constructed by leveraging the user’s social network to disentangle intricate social… More >

  • Open Access

    ARTICLE

    RESTlogic: Detecting Logic Vulnerabilities in Cloud REST APIs

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1797-1820, 2024, DOI:10.32604/cmc.2023.047051
    Abstract The API used to access cloud services typically follows the Representational State Transfer (REST) architecture style. RESTful architecture, as a commonly used Application Programming Interface (API) architecture paradigm, not only brings convenience to platforms and tenants, but also brings logical security challenges. Security issues such as quota bypass and privilege escalation are closely related to the design and implementation of API logic. Traditional code level testing methods are difficult to construct a testing model for API logic and test samples for in-depth testing of API logic, making it difficult to detect such logical vulnerabilities. We propose RESTlogic for this purpose.… More >

  • Open Access

    ARTICLE

    CVTD: A Robust Car-Mounted Video Text Detector

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1821-1842, 2024, DOI:10.32604/cmc.2023.047236
    Abstract Text perception is crucial for understanding the semantics of outdoor scenes, making it a key requirement for building intelligent systems for driver assistance or autonomous driving. Text information in car-mounted videos can assist drivers in making decisions. However, Car-mounted video text images pose challenges such as complex backgrounds, small fonts, and the need for real-time detection. We proposed a robust Car-mounted Video Text Detector (CVTD). It is a lightweight text detection model based on ResNet18 for feature extraction, capable of detecting text in arbitrary shapes. Our model efficiently extracted global text positions through the Coordinate Attention Threshold Activation (CATA) and… More >

  • Open Access

    ARTICLE

    A Fair and Trusted Trading Scheme for Medical Data Based on Smart Contracts

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1843-1859, 2024, DOI:10.32604/cmc.2023.047660
    Abstract Data is regarded as a valuable asset, and sharing data is a prerequisite for fully exploiting the value of data. However, the current medical data sharing scheme lacks a fair incentive mechanism, and the authenticity of data cannot be guaranteed, resulting in low enthusiasm of participants. A fair and trusted medical data trading scheme based on smart contracts is proposed, which aims to encourage participants to be honest and improve their enthusiasm for participation. The scheme uses zero-knowledge range proof for trusted verification, verifies the authenticity of the patient’s data and the specific attributes of the data before the transaction,… More >

  • Open Access

    ARTICLE

    Binary Program Vulnerability Mining Based on Neural Network

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1861-1879, 2024, DOI:10.32604/cmc.2023.046595
    Abstract Software security analysts typically only have access to the executable program and cannot directly access the source code of the program. This poses significant challenges to security analysis. While it is crucial to identify vulnerabilities in such non-source code programs, there exists a limited set of generalized tools due to the low versatility of current vulnerability mining methods. However, these tools suffer from some shortcomings. In terms of targeted fuzzing, the path searching for target points is not streamlined enough, and the completely random testing leads to an excessively large search space. Additionally, when it comes to code similarity analysis,… More >

  • Open Access

    ARTICLE

    A Trust Evaluation Mechanism Based on Autoencoder Clustering Algorithm for Edge Device Access of IoT

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1881-1895, 2024, DOI:10.32604/cmc.2023.047243
    Abstract First, we propose a cross-domain authentication architecture based on trust evaluation mechanism, including registration, certificate issuance, and cross-domain authentication processes. A direct trust evaluation mechanism based on the time decay factor is proposed, taking into account the influence of historical interaction records. We weight the time attenuation factor to each historical interaction record for updating and got the new historical record data. We refer to the beta distribution to enhance the flexibility and adaptability of the direct trust assessment model to better capture time trends in the historical record. Then we propose an autoencoder-based trust clustering algorithm. We perform feature… More >

  • Open Access

    ARTICLE

    Weighted Forwarding in Graph Convolution Networks for Recommendation Information Systems

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1897-1914, 2024, DOI:10.32604/cmc.2023.046346
    Abstract Recommendation Information Systems (RIS) are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet. Graph Convolution Network (GCN) algorithms have been employed to implement the RIS efficiently. However, the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process. To address this issue, we propose a Weighted Forwarding method using the GCN (WF-GCN) algorithm. The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning. By applying the WF-GCN… More >

  • Open Access

    ARTICLE

    Target Detection Algorithm in Foggy Scenes Based on Dual Subnets

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1915-1931, 2024, DOI:10.32604/cmc.2024.046125
    (This article belongs to this Special Issue: Deep Learning based Object Detection and Tracking in Videos)
    Abstract Under the influence of air humidity, dust, aerosols, etc., in real scenes, haze presents an uneven state. In this way, the image quality and contrast will decrease. In this case, It is difficult to detect the target in the image by the universal detection network. Thus, a dual subnet based on multi-task collaborative training (DSMCT) is proposed in this paper. Firstly, in the training phase, the Gated Context Aggregation Network (GCANet) is used as the supervisory network of YOLOX to promote the extraction of clean information in foggy scenes. In the test phase, only the YOLOX branch needs to be… More >

  • Open Access

    ARTICLE

    Personality Trait Detection via Transfer Learning

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1933-1956, 2024, DOI:10.32604/cmc.2023.046711
    (This article belongs to this Special Issue: Transfroming from Data to Knowledge and Applications in Intelligent Systems)
    Abstract Personality recognition plays a pivotal role when developing user-centric solutions such as recommender systems or decision support systems across various domains, including education, e-commerce, or human resources. Traditional machine learning techniques have been broadly employed for personality trait identification; nevertheless, the development of new technologies based on deep learning has led to new opportunities to improve their performance. This study focuses on the capabilities of pre-trained language models such as BERT, RoBERTa, ALBERT, ELECTRA, ERNIE, or XLNet, to deal with the task of personality recognition. These models are able to capture structural features from textual content and comprehend a multitude… More >

  • Open Access

    ARTICLE

    Multi-Objective Equilibrium Optimizer for Feature Selection in High-Dimensional English Speech Emotion Recognition

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1957-1975, 2024, DOI:10.32604/cmc.2024.046962
    (This article belongs to this Special Issue: Advanced Data Mining Techniques: Security, Intelligent Systems and Applications)
    Abstract Speech emotion recognition (SER) uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions. The number of features acquired with acoustic analysis is extremely high, so we introduce a hybrid filter-wrapper feature selection algorithm based on an improved equilibrium optimizer for constructing an emotion recognition system. The proposed algorithm implements multi-objective emotion recognition with the minimum number of selected features and maximum accuracy. First, we use the information gain and Fisher Score to sort the features extracted from signals. Then, we employ a multi-objective ranking method to evaluate these features and… More >

  • Open Access

    ARTICLE

    Color Image Compression and Encryption Algorithm Based on 2D Compressed Sensing and Hyperchaotic System

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1977-1993, 2024, DOI:10.32604/cmc.2024.047233
    Abstract With the advent of the information security era, it is necessary to guarantee the privacy, accuracy, and dependable transfer of pictures. This study presents a new approach to the encryption and compression of color images. It is predicated on 2D compressed sensing (CS) and the hyperchaotic system. First, an optimized Arnold scrambling algorithm is applied to the initial color images to ensure strong security. Then, the processed images are concurrently encrypted and compressed using 2D CS. Among them, chaotic sequences replace traditional random measurement matrices to increase the system’s security. Third, the processed images are re-encrypted using a combination of… More >

  • Open Access

    ARTICLE

    Strengthening Network Security: Deep Learning Models for Intrusion Detection with Optimized Feature Subset and Effective Imbalance Handling

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1995-2022, 2024, DOI:10.32604/cmc.2023.046478
    Abstract In recent years, frequent network attacks have highlighted the importance of efficient detection methods for ensuring cyberspace security. This paper presents a novel intrusion detection system consisting of a data preprocessing stage and a deep learning model for accurately identifying network attacks. We have proposed four deep neural network models, which are constructed using architectures such as Convolutional Neural Networks (CNN), Bi-directional Long Short-Term Memory (BiLSTM), Bidirectional Gate Recurrent Unit (BiGRU), and Attention mechanism. These models have been evaluated for their detection performance on the NSL-KDD dataset.To enhance the compatibility between the data and the models, we apply various preprocessing… More >

  • Open Access

    ARTICLE

    Performance Comparison of Hyper-V and KVM for Cryptographic Tasks in Cloud Computing

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2023-2045, 2024, DOI:10.32604/cmc.2023.044304
    (This article belongs to this Special Issue: Multimedia Encryption and Information Security)
    Abstract As the extensive use of cloud computing raises questions about the security of any personal data stored there, cryptography is being used more frequently as a security tool to protect data confidentiality and privacy in the cloud environment. A hypervisor is a virtualization software used in cloud hosting to divide and allocate resources on various pieces of hardware. The choice of hypervisor can significantly impact the performance of cryptographic operations in the cloud environment. An important issue that must be carefully examined is that no hypervisor is completely superior in terms of performance; Each hypervisor should be examined to meet… More >

  • Open Access

    ARTICLE

    Depression Intensity Classification from Tweets Using FastText Based Weighted Soft Voting Ensemble

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2047-2066, 2024, DOI:10.32604/cmc.2024.037347
    Abstract Predicting depression intensity from microblogs and social media posts has numerous benefits and applications, including predicting early psychological disorders and stress in individuals or the general public. A major challenge in predicting depression using social media posts is that the existing studies do not focus on predicting the intensity of depression in social media texts but rather only perform the binary classification of depression and moreover noisy data makes it difficult to predict the true depression in the social media text. This study intends to begin by collecting relevant Tweets and generating a corpus of 210000 public tweets using Twitter… More >

  • Open Access

    ARTICLE

    Facial Expression Recognition with High Response-Based Local Directional Pattern (HR-LDP) Network

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2067-2086, 2024, DOI:10.32604/cmc.2024.046070
    Abstract Although lots of research has been done in recognizing facial expressions, there is still a need to increase the accuracy of facial expression recognition, particularly under uncontrolled situations. The use of Local Directional Patterns (LDP), which has good characteristics for emotion detection has yielded encouraging results. An innovative end-to-end learnable High Response-based Local Directional Pattern (HR-LDP) network for facial emotion recognition is implemented by employing fixed convolutional filters in the proposed work. By combining learnable convolutional layers with fixed-parameter HR-LDP layers made up of eight Kirsch filters and derivable simulated gate functions, this network considerably minimizes the number of network… More >

  • Open Access

    REVIEW

    A Comprehensive Survey for Privacy-Preserving Biometrics: Recent Approaches, Challenges, and Future Directions

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2087-2110, 2024, DOI:10.32604/cmc.2024.047870
    (This article belongs to this Special Issue: Multimedia Encryption and Information Security)
    Abstract The rapid growth of smart technologies and services has intensified the challenges surrounding identity authentication techniques. Biometric credentials are increasingly being used for verification due to their advantages over traditional methods, making it crucial to safeguard the privacy of people’s biometric data in various scenarios. This paper offers an in-depth exploration for privacy-preserving techniques and potential threats to biometric systems. It proposes a noble and thorough taxonomy survey for privacy-preserving techniques, as well as a systematic framework for categorizing the field’s existing literature. We review the state-of-the-art methods and address their advantages and limitations in the context of various biometric… More >

  • Open Access

    ARTICLE

    RRT Autonomous Detection Algorithm Based on Multiple Pilot Point Bias Strategy and Karto SLAM Algorithm

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2111-2136, 2024, DOI:10.32604/cmc.2024.047235
    (This article belongs to this Special Issue: Optimization for Artificial Intelligence Application)
    Abstract A Rapid-exploration Random Tree (RRT) autonomous detection algorithm based on the multi-guide-node deflection strategy and Karto Simultaneous Localization and Mapping (SLAM) algorithm was proposed to solve the problems of low efficiency of detecting frontier boundary points and drift distortion in the process of map building in the traditional RRT algorithm in the autonomous detection strategy of mobile robot. Firstly, an RRT global frontier boundary point detection algorithm based on the multi-guide-node deflection strategy was put forward, which introduces the reference value of guide nodes’ deflection probability into the random sampling function so that the global search tree can detect frontier… More >

  • Open Access

    ARTICLE

    AutoRhythmAI: A Hybrid Machine and Deep Learning Approach for Automated Diagnosis of Arrhythmias

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2137-2158, 2024, DOI:10.32604/cmc.2024.045975
    Abstract In healthcare, the persistent challenge of arrhythmias, a leading cause of global mortality, has sparked extensive research into the automation of detection using machine learning (ML) algorithms. However, traditional ML and AutoML approaches have revealed their limitations, notably regarding feature generalization and automation efficiency. This glaring research gap has motivated the development of AutoRhythmAI, an innovative solution that integrates both machine and deep learning to revolutionize the diagnosis of arrhythmias. Our approach encompasses two distinct pipelines tailored for binary-class and multi-class arrhythmia detection, effectively bridging the gap between data preprocessing and model selection. To validate our system, we have rigorously… More >

  • Open Access

    ARTICLE

    Robust and Trustworthy Data Sharing Framework Leveraging On-Chain and Off-Chain Collaboration

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2159-2179, 2024, DOI:10.32604/cmc.2024.047340
    (This article belongs to this Special Issue: Security and Privacy for Blockchain-empowered Internet of Things)
    Abstract The proliferation of Internet of Things (IoT) systems has resulted in the generation of substantial data, presenting new challenges in reliable storage and trustworthy sharing. Conventional distributed storage systems are hindered by centralized management and lack traceability, while blockchain systems are limited by low capacity and high latency. To address these challenges, the present study investigates the reliable storage and trustworthy sharing of IoT data, and presents a novel system architecture that integrates on-chain and off-chain data manage systems. This architecture, integrating blockchain and distributed storage technologies, provides high-capacity, high-performance, traceable, and verifiable data storage and access. The on-chain system,… More >

  • Open Access

    ARTICLE

    Unknown DDoS Attack Detection with Fuzzy C-Means Clustering and Spatial Location Constraint Prototype Loss

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2181-2205, 2024, DOI:10.32604/cmc.2024.047387
    (This article belongs to this Special Issue: Cybersecurity for Cyber-attacks in Critical Applications in Industry)
    Abstract Since its inception, the Internet has been rapidly evolving. With the advancement of science and technology and the explosive growth of the population, the demand for the Internet has been on the rise. Many applications in education, healthcare, entertainment, science, and more are being increasingly deployed based on the internet. Concurrently, malicious threats on the internet are on the rise as well. Distributed Denial of Service (DDoS) attacks are among the most common and dangerous threats on the internet today. The scale and complexity of DDoS attacks are constantly growing. Intrusion Detection Systems (IDS) have been deployed and have demonstrated… More >

  • Open Access

    ARTICLE

    Enhanced Wolf Pack Algorithm (EWPA) and Dense-kUNet Segmentation for Arterial Calcifications in Mammograms

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2207-2223, 2024, DOI:10.32604/cmc.2024.046427
    (This article belongs to this Special Issue: Deep Learning in Medical Imaging-Disease Segmentation and Classification)
    Abstract Breast Arterial Calcification (BAC) is a mammographic decision dissimilar to cancer and commonly observed in elderly women. Thus identifying BAC could provide an expense, and be inaccurate. Recently Deep Learning (DL) methods have been introduced for automatic BAC detection and quantification with increased accuracy. Previously, classification with deep learning had reached higher efficiency, but designing the structure of DL proved to be an extremely challenging task due to overfitting models. It also is not able to capture the patterns and irregularities presented in the images. To solve the overfitting problem, an optimal feature set has been formed by Enhanced Wolf… More >

  • Open Access

    ARTICLE

    MSADCN: Multi-Scale Attentional Densely Connected Network for Automated Bone Age Assessment

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2225-2243, 2024, DOI:10.32604/cmc.2024.047641
    (This article belongs to this Special Issue: Deep Learning in Computer-Aided Diagnosis Based on Medical Image)
    Abstract Bone age assessment (BAA) helps doctors determine how a child’s bones grow and develop in clinical medicine. Traditional BAA methods rely on clinician expertise, leading to time-consuming predictions and inaccurate results. Most deep learning-based BAA methods feed the extracted critical points of images into the network by providing additional annotations. This operation is costly and subjective. To address these problems, we propose a multi-scale attentional densely connected network (MSADCN) in this paper. MSADCN constructs a multi-scale dense connectivity mechanism, which can avoid overfitting, obtain the local features effectively and prevent gradient vanishing even in limited training data. First, MSADCN designs… More >

  • Open Access

    ARTICLE

    IoT Smart Devices Risk Assessment Model Using Fuzzy Logic and PSO

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2245-2267, 2024, DOI:10.32604/cmc.2023.047323
    Abstract Increasing Internet of Things (IoT) device connectivity makes botnet attacks more dangerous, carrying catastrophic hazards. As IoT botnets evolve, their dynamic and multifaceted nature hampers conventional detection methods. This paper proposes a risk assessment framework based on fuzzy logic and Particle Swarm Optimization (PSO) to address the risks associated with IoT botnets. Fuzzy logic addresses IoT threat uncertainties and ambiguities methodically. Fuzzy component settings are optimized using PSO to improve accuracy. The methodology allows for more complex thinking by transitioning from binary to continuous assessment. Instead of expert inputs, PSO data-driven tunes rules and membership functions. This study presents a… More >

  • Open Access

    ARTICLE

    Enhancing Multicriteria-Based Recommendations by Alleviating Scalability and Sparsity Issues Using Collaborative Denoising Autoencoder

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2269-2286, 2024, DOI:10.32604/cmc.2024.047167
    Abstract A Recommender System (RS) is a crucial part of several firms, particularly those involved in e-commerce. In conventional RS, a user may only offer a single rating for an item-that is insufficient to perceive consumer preferences. Nowadays, businesses in industries like e-learning and tourism enable customers to rate a product using a variety of factors to comprehend customers’ preferences. On the other hand, the collaborative filtering (CF) algorithm utilizing AutoEncoder (AE) is seen to be effective in identifying user-interested items. However, the cost of these computations increases nonlinearly as the number of items and users increases. To triumph over the… More >

  • Open Access

    ARTICLE

    Dynamic Routing of Multiple QoS-Required Flows in Cloud-Edge Autonomous Multi-Domain Data Center Networks

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2287-2308, 2024, DOI:10.32604/cmc.2023.046550
    (This article belongs to this Special Issue: Transfroming from Data to Knowledge and Applications in Intelligent Systems)
    Abstract The 6th generation mobile networks (6G) network is a kind of multi-network interconnection and multi-scenario coexistence network, where multiple network domains break the original fixed boundaries to form connections and convergence. In this paper, with the optimization objective of maximizing network utility while ensuring flows performance-centric weighted fairness, this paper designs a reinforcement learning-based cloud-edge autonomous multi-domain data center network architecture that achieves single-domain autonomy and multi-domain collaboration. Due to the conflict between the utility of different flows, the bandwidth fairness allocation problem for various types of flows is formulated by considering different defined reward functions. Regarding the tradeoff between… More >

  • Open Access

    ARTICLE

    Traffic-Aware Fuzzy Classification Model to Perform IoT Data Traffic Sourcing with the Edge Computing

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2309-2335, 2024, DOI:10.32604/cmc.2024.046253
    Abstract The Internet of Things (IoT) has revolutionized how we interact with and gather data from our surrounding environment. IoT devices with various sensors and actuators generate vast amounts of data that can be harnessed to derive valuable insights. The rapid proliferation of Internet of Things (IoT) devices has ushered in an era of unprecedented data generation and connectivity. These IoT devices, equipped with many sensors and actuators, continuously produce vast volumes of data. However, the conventional approach of transmitting all this data to centralized cloud infrastructures for processing and analysis poses significant challenges. However, transmitting all this data to a… More >

  • Open Access

    ARTICLE

    An Improved Harris Hawk Optimization Algorithm for Flexible Job Shop Scheduling Problem

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2337-2360, 2024, DOI:10.32604/cmc.2023.045826
    (This article belongs to this Special Issue: Development and Industrial Application of AI Technologies)
    Abstract Flexible job shop scheduling problem (FJSP) is the core decision-making problem of intelligent manufacturing production management. The Harris hawk optimization (HHO) algorithm, as a typical metaheuristic algorithm, has been widely employed to solve scheduling problems. However, HHO suffers from premature convergence when solving NP-hard problems. Therefore, this paper proposes an improved HHO algorithm (GNHHO) to solve the FJSP. GNHHO introduces an elitism strategy, a chaotic mechanism, a nonlinear escaping energy update strategy, and a Gaussian random walk strategy to prevent premature convergence. A flexible job shop scheduling model is constructed, and the static and dynamic FJSP is investigated to minimize… More >

  • Open Access

    ARTICLE

    Artificial Immune Detection for Network Intrusion Data Based on Quantitative Matching Method

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2361-2389, 2024, DOI:10.32604/cmc.2023.045282
    (This article belongs to this Special Issue: Cybersecurity Solutions for Wireless Sensor Networks in IoT Environments )
    Abstract Artificial immune detection can be used to detect network intrusions in an adaptive approach and proper matching methods can improve the accuracy of immune detection methods. This paper proposes an artificial immune detection model for network intrusion data based on a quantitative matching method. The proposed model defines the detection process by using network data and decimal values to express features and artificial immune mechanisms are simulated to define immune elements. Then, to improve the accuracy of similarity calculation, a quantitative matching method is proposed. The model uses mathematical methods to train and evolve immune elements, increasing the diversity of… More >

  • Open Access

    ARTICLE

    Machine Learning Security Defense Algorithms Based on Metadata Correlation Features

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2391-2418, 2024, DOI:10.32604/cmc.2024.044149
    (This article belongs to this Special Issue: Advanced Data Mining Techniques: Security, Intelligent Systems and Applications)
    Abstract With the popularization of the Internet and the development of technology, cyber threats are increasing day by day. Threats such as malware, hacking, and data breaches have had a serious impact on cybersecurity. The network security environment in the era of big data presents the characteristics of large amounts of data, high diversity, and high real-time requirements. Traditional security defense methods and tools have been unable to cope with the complex and changing network security threats. This paper proposes a machine-learning security defense algorithm based on metadata association features. Emphasize control over unauthorized users through privacy, integrity, and availability. The… More >

  • Open Access

    ARTICLE

    A Machine Learning Approach to User Profiling for Data Annotation of Online Behavior

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2419-2440, 2024, DOI:10.32604/cmc.2024.047223
    Abstract The user’s intent to seek online information has been an active area of research in user profiling. User profiling considers user characteristics, behaviors, activities, and preferences to sketch user intentions, interests, and motivations. Determining user characteristics can help capture implicit and explicit preferences and intentions for effective user-centric and customized content presentation. The user’s complete online experience in seeking information is a blend of activities such as searching, verifying, and sharing it on social platforms. However, a combination of multiple behaviors in profiling users has yet to be considered. This research takes a novel approach and explores user intent types… More >

  • Open Access

    ARTICLE

    Machine Learning Techniques Using Deep Instinctive Encoder-Based Feature Extraction for Optimized Breast Cancer Detection

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2441-2468, 2024, DOI:10.32604/cmc.2024.044963
    Abstract Breast cancer (BC) is one of the leading causes of death among women worldwide, as it has emerged as the most commonly diagnosed malignancy in women. Early detection and effective treatment of BC can help save women’s lives. Developing an efficient technology-based detection system can lead to non-destructive and preliminary cancer detection techniques. This paper proposes a comprehensive framework that can effectively diagnose cancerous cells from benign cells using the Curated Breast Imaging Subset of the Digital Database for Screening Mammography (CBIS-DDSM) data set. The novelty of the proposed framework lies in the integration of various techniques, where the fusion… More >

  • Open Access

    ARTICLE

    Enhancing Image Description Generation through Deep Reinforcement Learning: Fusing Multiple Visual Features and Reward Mechanisms

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2469-2489, 2024, DOI:10.32604/cmc.2024.047822
    (This article belongs to this Special Issue: Machine Vision Detection and Intelligent Recognition)
    Abstract Image description task is the intersection of computer vision and natural language processing, and it has important prospects, including helping computers understand images and obtaining information for the visually impaired. This study presents an innovative approach employing deep reinforcement learning to enhance the accuracy of natural language descriptions of images. Our method focuses on refining the reward function in deep reinforcement learning, facilitating the generation of precise descriptions by aligning visual and textual features more closely. Our approach comprises three key architectures. Firstly, it utilizes Residual Network 101 (ResNet-101) and Faster Region-based Convolutional Neural Network (Faster R-CNN) to extract average… More >

  • Open Access

    ARTICLE

    FPSblo: A Blockchain Network Transmission Model Utilizing Farthest Point Sampling

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2491-2509, 2024, DOI:10.32604/cmc.2024.047166
    Abstract Peer-to-peer (P2P) overlay networks provide message transmission capabilities for blockchain systems. Improving data transmission efficiency in P2P networks can greatly enhance the performance of blockchain systems. However, traditional blockchain P2P networks face a common challenge where there is often a mismatch between the upper-layer traffic requirements and the underlying physical network topology. This mismatch results in redundant data transmission and inefficient routing, severely constraining the scalability of blockchain systems. To address these pressing issues, we propose FPSblo, an efficient transmission method for blockchain networks. Our inspiration for FPSblo stems from the Farthest Point Sampling (FPS) algorithm, a well-established technique widely… More >

  • Open Access

    ARTICLE

    MDCN: Modified Dense Convolution Network Based Disease Classification in Mango Leaves

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2511-2533, 2024, DOI:10.32604/cmc.2024.047697
    (This article belongs to this Special Issue: Machine Vision Detection and Intelligent Recognition)
    Abstract The most widely farmed fruit in the world is mango. Both the production and quality of the mangoes are hampered by many diseases. These diseases need to be effectively controlled and mitigated. Therefore, a quick and accurate diagnosis of the disorders is essential. Deep convolutional neural networks, renowned for their independence in feature extraction, have established their value in numerous detection and classification tasks. However, it requires large training datasets and several parameters that need careful adjustment. The proposed Modified Dense Convolutional Network (MDCN) provides a successful classification scheme for plant diseases affecting mango leaves. This model employs the strength… More >

  • Open Access

    ARTICLE

    ASLP-DL —A Novel Approach Employing Lightweight Deep Learning Framework for Optimizing Accident Severity Level Prediction

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2535-2555, 2024, DOI:10.32604/cmc.2024.047337
    (This article belongs to this Special Issue: The Next-generation Deep Learning Approaches to Emerging Real-world Applications)
    Abstract Highway safety researchers focus on crash injury severity, utilizing deep learning—specifically, deep neural networks (DNN), deep convolutional neural networks (D-CNN), and deep recurrent neural networks (D-RNN)—as the preferred method for modeling accident severity. Deep learning’s strength lies in handling intricate relationships within extensive datasets, making it popular for accident severity level (ASL) prediction and classification. Despite prior success, there is a need for an efficient system recognizing ASL in diverse road conditions. To address this, we present an innovative Accident Severity Level Prediction Deep Learning (ASLP-DL) framework, incorporating DNN, D-CNN, and D-RNN models fine-tuned through iterative hyperparameter selection with Stochastic… More >

  • Open Access

    ARTICLE

    Improved Data Stream Clustering Method: Incorporating KD-Tree for Typicality and Eccentricity-Based Approach

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2557-2573, 2024, DOI:10.32604/cmc.2024.045932
    Abstract Data stream clustering is integral to contemporary big data applications. However, addressing the ongoing influx of data streams efficiently and accurately remains a primary challenge in current research. This paper aims to elevate the efficiency and precision of data stream clustering, leveraging the TEDA (Typicality and Eccentricity Data Analysis) algorithm as a foundation, we introduce improvements by integrating a nearest neighbor search algorithm to enhance both the efficiency and accuracy of the algorithm. The original TEDA algorithm, grounded in the concept of “Typicality and Eccentricity Data Analytics”, represents an evolving and recursive method that requires no prior knowledge. While the… More >

  • Open Access

    ARTICLE

    Research on Interpolation Method for Missing Electricity Consumption Data

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2575-2591, 2024, DOI:10.32604/cmc.2024.048522
    (This article belongs to this Special Issue: Industrial Big Data and Artificial Intelligence-Driven Intelligent Perception, Maintenance, and Decision Optimization in Industrial Systems)
    Abstract Missing value is one of the main factors that cause dirty data. Without high-quality data, there will be no reliable analysis results and precise decision-making. Therefore, the data warehouse needs to integrate high-quality data consistently. In the power system, the electricity consumption data of some large users cannot be normally collected resulting in missing data, which affects the calculation of power supply and eventually leads to a large error in the daily power line loss rate. For the problem of missing electricity consumption data, this study proposes a group method of data handling (GMDH) based data interpolation method in distribution… More >

  • Open Access

    ARTICLE

    MCWOA Scheduler: Modified Chimp-Whale Optimization Algorithm for Task Scheduling in Cloud Computing

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2593-2616, 2024, DOI:10.32604/cmc.2024.046304
    Abstract Cloud computing provides a diverse and adaptable resource pool over the internet, allowing users to tap into various resources as needed. It has been seen as a robust solution to relevant challenges. A significant delay can hamper the performance of IoT-enabled cloud platforms. However, efficient task scheduling can lower the cloud infrastructure’s energy consumption, thus maximizing the service provider’s revenue by decreasing user job processing times. The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm (MCWOA), combines elements of the Chimp Optimization Algorithm (COA) and the Whale Optimization Algorithm (WOA). To enhance MCWOA’s identification precision, the Sobol sequence… More >

  • Open Access

    REVIEW

    A Review of the Application of Artificial Intelligence in Orthopedic Diseases

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2617-2665, 2024, DOI:10.32604/cmc.2024.047377
    (This article belongs to this Special Issue: Deep Learning in Computer-Aided Diagnosis Based on Medical Image)
    Abstract In recent years, Artificial Intelligence (AI) has revolutionized people’s lives. AI has long made breakthrough progress in the field of surgery. However, the research on the application of AI in orthopedics is still in the exploratory stage. The paper first introduces the background of AI and orthopedic diseases, addresses the shortcomings of traditional methods in the detection of fractures and orthopedic diseases, draws out the advantages of deep learning and machine learning in image detection, and reviews the latest results of deep learning and machine learning applied to orthopedic image detection in recent years, describing the contributions, strengths and weaknesses,… More >

  • Open Access

    ARTICLE

    IR-YOLO: Real-Time Infrared Vehicle and Pedestrian Detection

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2667-2687, 2024, DOI:10.32604/cmc.2024.047988
    (This article belongs to this Special Issue: Deep Learning based Object Detection and Tracking in Videos)
    Abstract Road traffic safety can decrease when drivers drive in a low-visibility environment. The application of visual perception technology to detect vehicles and pedestrians in infrared images proves to be an effective means of reducing the risk of accidents. To tackle the challenges posed by the low recognition accuracy and the substantial computational burden associated with current infrared pedestrian-vehicle detection methods, an infrared pedestrian-vehicle detection method A proposal is presented, based on an enhanced version of You Only Look Once version 5 (YOLOv5). First, A head specifically designed for detecting small targets has been integrated into the model to make full… More >

  • Open Access

    ARTICLE

    Exploring Sequential Feature Selection in Deep Bi-LSTM Models for Speech Emotion Recognition

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2689-2719, 2024, DOI:10.32604/cmc.2024.046623
    Abstract Machine Learning (ML) algorithms play a pivotal role in Speech Emotion Recognition (SER), although they encounter a formidable obstacle in accurately discerning a speaker’s emotional state. The examination of the emotional states of speakers holds significant importance in a range of real-time applications, including but not limited to virtual reality, human-robot interaction, emergency centers, and human behavior assessment. Accurately identifying emotions in the SER process relies on extracting relevant information from audio inputs. Previous studies on SER have predominantly utilized short-time characteristics such as Mel Frequency Cepstral Coefficients (MFCCs) due to their ability to capture the periodic nature of audio… More >

  • Open Access

    ARTICLE

    A Method for Detecting and Recognizing Yi Character Based on Deep Learning

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2721-2739, 2024, DOI:10.32604/cmc.2024.046449
    Abstract Aiming at the challenges associated with the absence of a labeled dataset for Yi characters and the complexity of Yi character detection and recognition, we present a deep learning-based approach for Yi character detection and recognition. In the detection stage, an improved Differentiable Binarization Network (DBNet) framework is introduced to detect Yi characters, in which the Omni-dimensional Dynamic Convolution (ODConv) is combined with the ResNet-18 feature extraction module to obtain multi-dimensional complementary features, thereby improving the accuracy of Yi character detection. Then, the feature pyramid network fusion module is used to further extract Yi character image features, improving target recognition… More >

  • Open Access

    ARTICLE

    Detection Algorithm of Laboratory Personnel Irregularities Based on Improved YOLOv7

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2741-2765, 2024, DOI:10.32604/cmc.2024.046768
    Abstract Due to the complex environment of the university laboratory, personnel flow intensive, personnel irregular behavior is easy to cause security risks. Monitoring using mainstream detection algorithms suffers from low detection accuracy and slow speed. Therefore, the current management of personnel behavior mainly relies on institutional constraints, education and training, on-site supervision, etc., which is time-consuming and ineffective. Given the above situation, this paper proposes an improved You Only Look Once version 7 (YOLOv7) to achieve the purpose of quickly detecting irregular behaviors of laboratory personnel while ensuring high detection accuracy. First, to better capture the shape features of the target,… More >

  • Open Access

    ARTICLE

    An Online Fake Review Detection Approach Using Famous Machine Learning Algorithms

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2767-2786, 2024, DOI:10.32604/cmc.2023.046838
    Abstract Online review platforms are becoming increasingly popular, encouraging dishonest merchants and service providers to deceive customers by creating fake reviews for their goods or services. Using Sybil accounts, bot farms, and real account purchases, immoral actors demonize rivals and advertise their goods. Most academic and industry efforts have been aimed at detecting fake/fraudulent product or service evaluations for years. The primary hurdle to identifying fraudulent reviews is the lack of a reliable means to distinguish fraudulent reviews from real ones. This paper adopts a semi-supervised machine learning method to detect fake reviews on any website, among other things. Online reviews… More >

  • Open Access

    ARTICLE

    A Blockchain and CP-ABE Based Access Control Scheme with Fine-Grained Revocation of Attributes in Cloud Health

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2787-2811, 2024, DOI:10.32604/cmc.2023.046106
    Abstract The Access control scheme is an effective method to protect user data privacy. The access control scheme based on blockchain and ciphertext policy attribute encryption (CP–ABE) can solve the problems of single—point of failure and lack of trust in the centralized system. However, it also brings new problems to the health information in the cloud storage environment, such as attribute leakage, low consensus efficiency, complex permission updates, and so on. This paper proposes an access control scheme with fine-grained attribute revocation, keyword search, and traceability of the attribute private key distribution process. Blockchain technology tracks the authorization of attribute private… More >

  • Open Access

    ARTICLE

    A Post-Quantum Cross-Domain Authentication Scheme Based on Multi-Chain Architecture

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2813-2827, 2024, DOI:10.32604/cmc.2024.046816
    Abstract Due to the rapid advancements in network technology, blockchain is being employed for distributed data storage. In the Internet of Things (IoT) scenario, different participants manage multiple blockchains located in different trust domains, which has resulted in the extensive development of cross-domain authentication techniques. However, the emergence of many attackers equipped with quantum computers has the potential to launch quantum computing attacks against cross-domain authentication schemes based on traditional cryptography, posing a significant security threat. In response to the aforementioned challenges, our paper demonstrates a post-quantum cross-domain identity authentication scheme to negotiate the session key used in the cross-chain asset… More >

  • Open Access

    ARTICLE

    An Underwater Target Detection Algorithm Based on Attention Mechanism and Improved YOLOv7

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2829-2845, 2024, DOI:10.32604/cmc.2024.047028
    (This article belongs to this Special Issue: Machine Vision Detection and Intelligent Recognition)
    Abstract For underwater robots in the process of performing target detection tasks, the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model, which is prone to issues like error detection, omission detection, and poor accuracy. Therefore, this paper proposed the CER-YOLOv7(CBAM-EIOU-RepVGG-YOLOv7) underwater target detection algorithm. To improve the algorithm’s capability to retain valid features from both spatial and channel perspectives during the feature extraction phase, we have added a Convolutional Block Attention Module (CBAM) to the backbone network. The Reparameterization Visual Geometry Group (RepVGG) module is inserted into the… More >

  • Open Access

    ARTICLE

    Learning Epipolar Line Window Attention for Stereo Image Super-Resolution Reconstruction

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2847-2864, 2024, DOI:10.32604/cmc.2024.047093
    (This article belongs to this Special Issue: Development and Industrial Application of AI Technologies)
    Abstract Transformer-based stereo image super-resolution reconstruction (Stereo SR) methods have significantly improved image quality. However, existing methods have deficiencies in paying attention to detailed features and do not consider the offset of pixels along the epipolar lines in complementary views when integrating stereo information. To address these challenges, this paper introduces a novel epipolar line window attention stereo image super-resolution network (EWASSR). For detail feature restoration, we design a feature extractor based on Transformer and convolutional neural network (CNN), which consists of (shifted) window-based self-attention ((S)W-MSA) and feature distillation and enhancement blocks (FDEB). This combination effectively solves the problem of global… More >

Share Link