Home / Journals / JRM / Online First
Special lssues
Table of Content
  • Open Access

    ARTICLE

    Properties of Bark Particleboard Bonded with Demethylated Lignin Adhesives Derived from Leucaena leucocephala Bark

    Rafidah Md Salim1,2,*, Jahimin Asik2, Mohd Sani Sarjadi2
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.045695
    Abstract Lignin extraction from bark can maximize the utilization of biomass waste, offer cost-effectiveness, and promote environmental friendliness when employed as an adhesive material in bark particleboard production. Particles of fine (0.2 to 1.0 mm), medium (1.0 to 2.5 mm), and coarse (2.5 to 12.0 mm) sizes, derived from the bark of Leucaena leucocephala, were hot-pressed using a heating plate at 175°C for 7 min to create single-layer particleboards measuring 320 mm × 320 mm × 10 mm, targeting a density of 700 kg/m. Subsequently, the samples were trimmed and conditioned at 20°C and 65% relative humidity. In this study, we… More >
    Graphic Abstract

    Properties of Bark Particleboard Bonded with Demethylated Lignin Adhesives Derived from <i>Leucaena leucocephala</i> Bark

  • Open Access

    ARTICLE

    Optimization and Characterization of Combined Degumming Process of Typha angustata L. Stem Fibers

    Sana Rezig*, Foued Khoffi, Mounir Jaouadi, Asma Eloudiani, Slah Msahli
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.049935
    (This article belongs to the Special Issue: Recent Advances in Lignocellulosic Fiber-Polymer)
    Abstract Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers. Researchers over the years have explored many plant fibers using different extraction processes to study their physical, chemical, and mechanical properties. In this context, the present study relates to the extraction, characterization, and optimization of Typha angustata L. stem fibers. For this purpose, desirability functions and response surface methodology were applied to simultaneously optimize the diameter (D), linear density (LD); yield (Y), lignin fraction (L), and tenacity (T) of Typha stem fibers. Typha stems have been subjected to both alkali (NaOH) and enzymatic (pectinex… More >

  • Open Access

    ARTICLE

    Isolation and Characterization of Cellulose Nanofiber (CNF) from Kenaf (Hibiscus cannabinus) Bast through the Chemo-Mechanical Process

    Rudi Dungani1,*, Mohammad Irfan Bakshi2, Tsabita Zahra Hanifa1, Mustika Dewi1, Firda A. Syamani2, Melbi Mahardika2, Widya Fatriasari2,*
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.049342
    (This article belongs to the Special Issue: Special Issue in Celebration of JRM 10 Years)
    Abstract The present work emphasizes the isolation of cellulose nanofiber (CNF) from the kenaf (Hibiscus cannabinus) bast through a chemo-mechanical process. In order to develop high CNF yield with superior properties of CNF for improving compatibility in varied applications this method is proposed. The fiber purification involved pulping and bleaching treatments, whereas mechanical treatment was performed by grinding and high-pressure treatments. The kraft pulping as a delignification method followed by bleaching has successfully removed almost 99% lignin in the fiber with high pulp yield and delignification selectivity. The morphology of the fibers was characterized by scanning electron microscopy, which showed a… More >
    Graphic Abstract

    Isolation and Characterization of Cellulose Nanofiber (CNF) from Kenaf <i>(Hibiscus cannabinus)</i> Bast through the Chemo-Mechanical Process

  • Open Access

    REVIEW

    A Review of Basic Mechanical Properties of Bamboo Scrimber Based on Small-Scale Specimens

    Xin Xue1,2,3, Haitao Li1,2,3,*, Rodolfo Lorenzo4
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.029602
    (This article belongs to the Special Issue: Bio-Composite Materials and Structures-2023)
    Abstract This review summarizes the existing knowledge about the mechanical properties of bamboo scrimber (BS) in literature. According to literature reviews, the strength of BS under different load modes is affected by a series of factors, such as the type of original bamboo, growth position, resin content, treatment method and density. Therefore, different production processes can be adopted according to different requirements, and bamboo scrimbers can also be classified accordingly. In addition, this review summarizes the changes in different factors considered by scholars in the research on the mechanical properties of BS, so that readers can have an overall understanding of… More >
    Graphic Abstract

    A Review of Basic Mechanical Properties of Bamboo Scrimber Based on Small-Scale Specimens

  • Open Access

    ARTICLE

    Study of Hygrothermal Behavior of Bio-Sourced Material Treated Ecologically for Improving Thermal Performance of Buildings

    Soumia Mounir1,2,*, Miloudia Slaoui2, Youssef Maaloufa1,2, Fatima Zohra El Wardi2,3, Yakubu Aminu Dodo4,5, Sara Ibn-Elhaj2, Abdelhamid Khabbazi2
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.049392
    (This article belongs to the Special Issue: Renewable Materials and Advanced Technologies for Sustainability)
    Abstract Creating sustainable cities is the only way to live in a clean environment, and this problem can be solved by using bio-sourced and recycled materials. For this purpose, the authors contribute to the valuation of sheep wool waste as an eco-friendly material to be used in insulation. The paper investigates the thermal, hygrothermal, and biological aspects of sheep wool by testing a traditional treatment. The biological method of aerobic mesophilic flora has been applied. Fluorescence X was used to determine the chemical composition of the materials used. Also, thermal characterization has been conducted. The thermal conductivity is above 0.046 (W·m−1·K−1)… More >

  • Open Access

    REVIEW

    New Problems of Boiler Corrosion after Coupling Combustion of Coal and Biomass and Anti-Corrosion Technologies

    Lei Wang1, Ziran Ma1,*, Chunlin Zhao1, Jiali Zhou1, Hongyan Wang1, Ge Li1, Ningling Zhou2
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.047343
    Abstract This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions. Biomass, as a renewable energy source, offers advantages in energy-saving and carbon reduction. However, the corrosive effects of alkali metal compounds, sulfur (S) and chlorine (Cl) elements in the ash after combustion cannot be underestimated due to the high volatile content of biomass fuels. We investigate the corrosion mechanisms, as well as the transfer of Cl and alkali metal elements during this process. Comparative corrosion analyses are conducted among coal-fired boilers, pure biomass boilers and boilers with coupled combustion. Various biomass… More >

  • Open Access

    ARTICLE

    Adsorption of Malachite Green Using Activated Carbon from Mangosteen Peel: Optimization Using Box-Behnken Design

    Nabila Eka Yuningsih, Latifa Ariani, Suprapto Suprapto, Ita Ulfin, Harmami Harmami, Hendro Juwono, Yatim Lailun Ni’mah*
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.049109
    (This article belongs to the Special Issue: Special Issue in Celebration of JRM 10 Years)
    Abstract In this research, activated carbon from mangosteen peel has been synthesized using sulfuric acid as an activator. The adsorption performance of the activated carbon was optimized using malachite green dye as absorbate. Malachite green dye waste is a toxic and non-biodegradable material that damages the environment. Optimization of adsorption processes was carried out using Response Surface Methodology (RSM) with a Box-Behnken Design (BBD). The synthesized activated carbon was characterized using FTIR and SEM instruments. The FTIR spectra confirmed the presence of a sulfonate group (-SO3H) in the activated carbon, indicating that the activation process using sulfuric acid was successful. SEM… More >

  • Open Access

    ARTICLE

    Morphological Evolution of Self-Assembled Sodium Dodecyl Sulfate/Dodecyltrimethylammonium Bromide@Epoxy-β-Cyclodextrin Supramolecular Aggregates Induced by Temperature

    Qingran Meng1,2, Wenwen Xu2, Zuobing Xiao2, Qinfei Ke1,2,*, Xingran Kou1,2,*
    Journal of Renewable Materials, DOI:10.32604/jrm.2023.029182
    (This article belongs to the Special Issue: Application of Renewable Materials in Perfumes, Fragrances, and Cosmetics)
    Abstract

    Bio-based cyclodextrins (CDs) are a common research object in supramolecular chemistry. The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interaction with guest molecules. The different forms of supramolecular self-assemblies can be transformed into each other under certain conditions. The regulation of supramolecular self-assembly is not only helpful to understand the self-assembly principle, but also beneficial to its application. In the present study, the self-assembly behavior of epoxy-β-cyclodextrin (EP-β-CD) and mixed anionic and cationic surfactant system (sodium dodecyl sulfate/dodecyltrimethylammonium bromide, SDS/DTAB) in aqueous solution was studied. Morphological and particle size characterization found… More >
    Graphic Abstract

    Morphological Evolution of Self-Assembled Sodium Dodecyl Sulfate/Dodecyltrimethylammonium Bromide@Epoxy-β-Cyclodextrin Supramolecular Aggregates Induced by Temperature

  • Open Access

    ARTICLE

    Thermo-Physical Potential of Recycled Banana Fibers for Improving the Thermal and Mechanical Properties of Biosourced Gypsum-Based Materials

    Youssef Maaloufa1,2,3,*, Soumia Mounir1,2,3, Sara Ibnelhaj2, Fatima Zohra El Wardi6, Asma Souidi3, Yakubu Aminu Dodo4,5, Malika Atigui3, Mina Amazal3, Abelhamid Khabbazi2, Hassan Demrati3, Ahmed Aharoune3
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.049942
    (This article belongs to the Special Issue: Renewable Materials and Advanced Technologies for Sustainability)
    Abstract The development of bio-sourced materials is essential to ensuring sustainable construction; it is considered a locomotive of the green economy. Furthermore, it is an abundant material in our country, to which very little attention is being given. This work aims to valorize the waste of the trunks of banana trees to be used in construction. Firstly, the physicochemical properties of the fiber, such as the percentage of crystallization and its morphology, have been determined by X-ray diffraction tests and scanning electron microscopy to confirm the potential and the impact of the mode of drying on the quality of the banana… More >

  • Open Access

    ARTICLE

    One-Step to Prepare Lignin Based Fluorescent Nanoparticles with Excellent Radical Scavenging Activity

    Xujing Zhang1, Hatem Abushammala2, Debora Puglia3, Binbao Lu1, Pengwu Xu1, Weijun Yang1,*, Piming Ma1
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.049810
    (This article belongs to the Special Issue: Functional Materials Based on Forest Residues)
    Abstract Fluorescent nanomaterials have attracted much attention, due to their unique luminescent properties and promising applications in biomedical areas. In this study, lignin based fluorescent nanoparticles (LFNP) with high yield (up to 32.4%) were prepared from lignin nanoparticles (LNP) by one-pot hydrothermal method with ethylenediamine (EDA) and citric acid. Morphology and chemical structure of LFNP were investigated by SEM, FT-IR, and zeta potential, and it was found that the structure of LFNP changed with the increase of citric acid addition. LFNP showed the highest fluorescence intensity under UV excitation at wavelengths of 375–385 nm, with emission wavelengths between 454–465 nm, and… More >
    Graphic Abstract

    One-Step to Prepare Lignin Based Fluorescent Nanoparticles with Excellent Radical Scavenging Activity

  • Open Access

    ARTICLE

    Adhesion of Technical Lignin-Based Non-Isocyanate Polyurethane Adhesives for Wood Bonding

    Jaewook Lee1, Byung-Dae Park1,*, Qinglin Wu2
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.049948
    Abstract Lignin is the most abundant aromatic natural polymer, and receiving great attention in replacing various petroleum-based polymers. The aim of this study is to investigate the feasibility of technical lignin as a polyol for the synthesis of non-isocyanate polyurethane (NIPU) adhesives to substitute current polyurethane (PU) adhesives that have been synthesized with toxic isocyanate and polyols. Crude hardwood kraft lignin (C-HKL) was extracted from black liquor from a pulp mill followed by acetone fractionation to obtain acetone soluble-HKL (AS-HKL). Then, C-HKL, AS-HKL, and softwood sodium lignosulfonate (LS) were used for the synthesis of technical lignin-based NIPU adhesives through carbonation and… More >

  • Open Access

    ARTICLE

    Simple and High-Yield Synthesis of a Thinner Layer of Graphenic Carbon from Coconut Shells

    Retno Asih1,*, Haniffudin Nurdiansah2, Mochamad Zainuri1, Deni S. Khaerudini3,4, Angelinus T. Setiawan4, A. Y. Dias4, Pudji Untoro4,5, Ahmad Sholih1, Darminto1,*
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.049097
    (This article belongs to the Special Issue: Special Issue in Celebration of JRM 10 Years)
    Abstract Biomass has become of recent interest as a raw material for ‘green’ graphenic carbon (GC) since it promotes an environmentally friendly approach. Here, we investigate a single pyrolysis route to synthesize GC from coconut shells which provides a simple method and can produce a high yield, thus being convenient for large-scale production. The pyrolysis involves a stepped holding process at 350°C for 1 h and at 650°C or 900°C for 3 h. The GC sample resulted at the 900°C pyrolysis has a thinner sheet, a less porous structure, a higher C/O ratio, and an enhanced electrical conductivity than those pyrolyzed… More >
    Graphic Abstract

    Simple and High-Yield Synthesis of a Thinner Layer of Graphenic Carbon from Coconut Shells

  • Open Access

    ARTICLE

    Synergism of Zinc Oxide/Organoclay-Loaded Poly(lactic acid) Hybrid Nanocomposite Plasticized by Triacetin for Sustainable Active Food Packaging

    Ponusa Songtipya1,2,*, Thummanoon Prodpran1,2, Ladawan Songtipya1,2, Theerarat Sengsuk1
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.049068
    (This article belongs to the Special Issue: Active and Intelligent Food Packaging Films)
    Abstract The synergistic effect of organoclay (OC) and zinc oxide (ZnO) nanoparticles on the crucial properties of poly(lactic acid) (PLA) nanocomposite films was systematically investigated herein. After their incorporation into PLA via the solvent casting technique, the water vapor barrier property of the PLA/OC/ZnO film improved by a maximum of 86% compared to the neat PLA film without the deterioration of Young’s modulus or the tensile strength. Moreover, the film’s self-antibacterial activity against foodborne pathogens, including gram-negative (Escherichia coli, E. coli) and gram-positive (Staphylococcus aureus, S. aureus) bacteria, was enhanced by a maximum of approximately 98–99% compared to the neat PLA… More >
    Graphic Abstract

    Synergism of Zinc Oxide/Organoclay-Loaded Poly(lactic acid) Hybrid Nanocomposite Plasticized by Triacetin for Sustainable Active Food Packaging

  • Open Access

    ARTICLE

    A Comprehensive Analysis of the Thermo-Chemical Properties of Sudanese Biomass for Sustainable Applications

    Wadah Mohammed1,2, Zeinab Osman2, Salah Elarabi3, Bertrand Charrier1,*
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.031050
    (This article belongs to the Special Issue: Renewable Material from Agricultural Waste and By-Product and Its Applications)
    Abstract The chemical composition and thermal properties of natural fibers are the most critical variables that determine the overall properties of the fibers and influence their processing and use in different sustainable applications, such as their conversion into bioenergy and biocomposites. Their thermal and mechanical properties can be estimated by evaluating the content of cellulose, lignin, and other extractives in the fibers. In this research work, the chemical composition and thermal properties of three fibers, namely bagasse, kenaf bast fibers, and cotton stalks, were evaluated to assess their potential utilization in producing biocomposites and bioenergy materials. The chemical composition analysis followed… More >

  • Open Access

    ARTICLE

    Bio-PCM Panels Composed of Renewable Materials Interact with Solar Heating Systems for Building Thermal Insulation

    Yosr Laatiri, Habib Sammouda, Fadhel Aloulou*
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.047022
    (This article belongs to the Special Issue: Special Issue in Celebration of JRM 10 Years)
    Abstract This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings. Our contribution is the creation of insulating composite panels made of bio-based phase change materials (bio-PCM is all from coconut oil), cement and renewable materials (treated wood fiber and organic clay). The inclusion of wood fibers improved the thermal properties; a simple 2% increase of wood fiber decreased the heat conductivity by approximately 23.42%. The issues of bio-PCM leakage in the cement mortar and a roughly 56.5% reduction in thermal conductivity with bio-PCM stability in… More >
    Graphic Abstract

    Bio-PCM Panels Composed of Renewable Materials Interact with Solar Heating Systems for Building Thermal Insulation

  • Open Access

    REVIEW

    Application of Plant-Based Coagulants and Their Mechanisms in Water Treatment: A Review

    Abderrezzaq Benalia1,2,*, Kerroum Derbal2, Zahra Amrouci2,3, Ouiem Baatache2, Amel Khalfaoui4, Antonio Pizzi5,*
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.048306
    (This article belongs to the Special Issue: Special Issue in Celebration of JRM 10 Years)
    Abstract This review describes the mechanisms of natural coagulants. It provides a good understanding of the two key processes of coagulation-flocculation: adsorption and charge neutralization, as well as adsorption and bridging. Various factors have influence the coagulation/flocculation process, including the effect of pH, coagulant dosage, coagulant type, temperature, initial turbidity, coagulation speed, flocculation speed, coagulation and flocculation time, settling time, colloidal particles, zeta potential, the effects of humic acids, and extraction density are explained. The bio-coagulants derived from plants are outlined. The impact of organic coagulants on water quality, focusing on their effects on the physicochemical parameters of water, heavy metals… More >
    Graphic Abstract

    Application of Plant-Based Coagulants and Their Mechanisms in Water Treatment: A Review

  • Open Access

    REVIEW

    Wood By-Products as UV Protection: A Consequence Review

    Naglaa Salem El‑Sayed, Mohamed Hasanin, Samir Kamel*
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.049118
    (This article belongs to the Special Issue: Special Issue in Celebration of JRM 10 Years)
    Abstract

    In recent decades, the ozone layer has suffered considerable damage, increasing the entry of ultraviolet (UV) light into the atmosphere and reaching the earth’s surface, negatively affecting life. Accordingly, researchers aimed to solve this problem by synthesizing advanced UV-shielding materials. On the other hand, developing an easy and green strategy to prepare functional materials without standing properties based on naturally abundant and environmentally friendly raw materials is highly desirable for sustainable development. Because biomass-derived materials are sustainable and biodegradable, they present a promising substitute for petroleum-based polymers. The three main structural constituents of the plant biomass-based materials that are naturally… More >
    Graphic Abstract

    Wood By-Products as UV Protection: A Consequence Review

  • Open Access

    REVIEW

    Renewable Polymers in Biomedical Applications: From the Bench to the Market

    Rauany Cristina Lopes1, Tamires Nossa2, Wilton Rogério Lustri1, Gabriel Lombardo3,4,5, Maria Inés Errea3,4, Eliane Trovatti1,*
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.048957
    (This article belongs to the Special Issue: Special Issue in Celebration of JRM 10 Years)
    Abstract Polymers from renewable resources have been used for a long time in biomedical applications and found an irreplaceable role in some of them. Their uses have been increasing because of their attractive properties, contributing to the improvement of life quality, mainly in drug release systems and in regenerative medicine. Formulations using natural polymer, nano and microscale particles preparation, composites, blends and chemical modification strategies have been used to improve their properties for clinical application. Although many studies have been carried out with these natural polymers, the way to reach the market is long and only very few of them become… More >

  • Open Access

    ARTICLE

    Fabrication of Core-Shell Hydrogel Bead Based on Sodium Alginate and Chitosan for Methylene Blue Adsorption

    Xiaoyu Chen*
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.048470
    Abstract A novel core-shell hydrogel bead was fabricated for effective removal of methylene blue dye from aqueous solutions. The core, made of sodium alginate-g-polyacrylamide and attapulgite nanofibers, was cross-linked by Calcium ions (Ca2+). The shell, composed of a chitosan/activated carbon mixture, was then coated onto the core. Fourier transform infrared spectroscopy confirmed the grafting polymerization of acrylamide onto sodium alginate. Scanning electron microscopy images showed the core-shell structure. The core exhibited a high water uptake ratio, facilitating the diffusion of methylene blue into the core. During the diffusion process, the methylene blue was first adsorbed by the shell and then further… More >
    Graphic Abstract

    Fabrication of Core-Shell Hydrogel Bead Based on Sodium Alginate and Chitosan for Methylene Blue Adsorption

  • Open Access

    ARTICLE

    Identification of Secondary Metabolites in Tunisian Tilia platyphyllos Scop. using MALDI-TOF and GC-MS

    Ayda Khadhri1, Mohamed Mendili1, Marwa Bannour-Scharinger1, Eric Masson2, Antonio Pizzi2,*
    Journal of Renewable Materials, DOI:10.32604/jrm.2024.046950
    (This article belongs to the Special Issue: Special Issue in Celebration of JRM 10 Years)
    Abstract This study is the first to evaluate the phytochemical content and biological properties of Tunisian T. platyphyllos Scop. A total of 23 compounds of essential oils were identified by gas chromatography-mass spectrometry (GC-MS) analysis of bracts and fruit extracts. The results show that oxygenated monoterpenes were the dominant class of essential oils. The phenolic composition was investigated by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). The analysis showed that the chemical profiles of the ethanolic extracts of bracts and fruits are substantially similar. The highest polyphenol content was found in the ethanolic extracts of the fruits (7.65 mg gallic acid equivalents… More >
    Graphic Abstract

    Identification of Secondary Metabolites in Tunisian <i>Tilia platyphyllos</i> Scop. using MALDI-TOF and GC-MS