Vol.9, No.10, 2021-Table of Contents

On the Cover


Ethyl cellulose, as a non–toxic, natural material was used to prepare ethyl cellulose microcapsules containing potassium monopersulfate (PMCM) to fight off bacteria. The sustained release of the drug from PMCM could maintain effective activity for a long time, showing great potential as a high sustained-release performance and green microcapsule. Owing to the excellent features of PMCM, PMCM can potentially be widely used for water treatment. 

View this paper

  • Biodegradable Behavior of Waste Wool and Their Recycled Polyester Preforms in Aqueous and Soil Conditions
  • Abstract Present study deals with the biodegradable behavior of individual components and their preforms of nonwoven biocomposites developed from waste wool fibers including coring wool (CW), dorper wool (DW) and recycled polyester fibers (RPET). A respirometric technique was employed to estimate the production of CO2 during the biodegradation experiments under soil and aqueous media conditions. Functional groups of test samples before and after biodegradation were analyzed using Fourier transform infrared spectroscopy (FTIR). Leaching chemicals such as formaldehyde (hydrolyzed) and Chromium VI (Cr VI) was also measured. The CO2 emission in wool fibers CW and DW indicated 90% and 60% biodegradation in… More
  •   Views:814       Downloads:470        Download PDF
  • Preparation and Characterization of Potassium Monopersulfate/Ethyl Cellulose Microcapsules and Their Sustained Release Performance
  • Abstract Environmental cleaning is an important aspect of bacteria control. Ethyl cellulose microcapsules containing potassium monopersulfate (PMCM) were prepared by emulsified solvent diffusion method. The chemical structure and microstructure of the obtained PMCM was characterized by methods of Fourier transform infrared spectroscopy (FT-IR), optical microscopy, scanning electron microscopy and X-ACT energy dispersive X-ray spectroscopy. The SEM micrographs of the PMCM containing 21.6% of C, 46.8% of O, 10.7% of S and 19.4% of K was relatively smooth. Thermal stability, sustained release performance, and antimicrobial activity of PMCM were investigated. The results showed that the drug loading and encapsulation efficiency of PMCM… More
  •   Views:1046       Downloads:485        Download PDF
  • Synthesis and Characterization of Green Potassium Nanoparticles from Sideroxylon Capiri and Evaluation of Their Potential Antimicrobial
  • Abstract In the present study, the green synthesis of potassium nanoparticles (K-NPs) was assessed using aqueous extract of Sideroxylon capiri. The potassium nanoparticles were analyzed by UV-visible spectroscopic techniques, X-ray spectrometers of energy dispersive (SEM-EDS) and dynamic light scattering. The results showed high values at 3.5 keV confirming the formation of potassium nanoparticles and the SEM analysis showed an agglomerated particles size between 360 to 200 nm with a spherical morphology. The K-NPs showed an effective antibacterial activity against the test organisms mainly with Bacillus cereus, Enterobacter aerogenes, Fusarium solani and Botrytis cinerea. However further studies about nanotoxicity of K-NPs are… More
  •   Views:787       Downloads:798        Download PDF
  • Preparation and Electrorheological Response of PAL/TiO2/PANI Nanorods
  • Abstract Using palygorskite (PAL) as template, the PAL/TiO2/PANI nano-rods were synthesized by heterogeneous precipitation and in-situ polymerization. The synthesized PAL/TiO2/PANI nanorods were used as a novel electrorheological (ER) fluid by mixing with silicone oil, which showed excellent ER effect. The yield stress of the PAL/TiO2/PANI based ER fluid (15 vol%) reached 8.8 kPa under 4 kV mm−1 electric field. The dynamic shear stress of the PAL/TiO2/PANI based ER fluid could maintain a stable level in the shear rate range of 0.1–100 s−1 . Furthermore, the PAL/TiO2/PANI ER fluid exhibited excellent suspension stability. More
  •   Views:846       Downloads:500        Download PDF
  • Nanofibrillation of Bacterial Cellulose Using High-Pressure Homogenization and Its Films Characteristics
  • Abstract The microstructure of bacterial cellulose nanofibers (BCNs) film affects its characteristic. One of several means to engineer the microstructure is by changing the BCNs size and fiber distribution through a high-pressure homogenizer (HPH) process. This research aimed to find out the effects of repetition cycles on HPH process towards BCNs film characteristics. To prepare BCNs films, a pellicle from the fermentation of pineapple peels waste with Acetobacter xylinum (A. xylinum) was extracted, followed by crushing the pellicle with a high-speed blender, thereafter, homogenized using HPH at 150 bar pressure with variations of 5, 10, 15, and 20 cycles. The BCNs… More
  •   Views:924       Downloads:502        Download PDF
  • Effect of the Proportion of Bamboo Scraps on the Properties of Bamboo Scraps/Magnesium Oxychloride Composites
  • Abstract This study was designed to solve the problem of large waste volume from bamboo processing residues in recent years. Using magnesium oxychloride (MO) cementitious material as the main material and bamboo residue (BR) as the reinforcing material, a BR/MO composite material was prepared. The effects of BR amount on the molding properties, mechanical strength, and water resistance of BR/MO composites were examined and discussed. Scanning electron microscopy (SEM), X-ray diffractometry (XRD), and thermogravimetric analysis were used to characterize composite microscopic morphology, crystalline structure, and heat resistance. The results showed that, when the BR content was 1.00% (by wt), the flowability… More
  •   Views:1052       Downloads:516        Download PDF
  • An Experimental and Analytical Study on Cross-Laminated Bamboo Rocking Walls with Friction Dampers
  • Abstract

    Cross-laminated bamboo (CLB) have a high strength to weight ratio and stable bidirectional mechanical properties. Inspired by the investigation on cross-laminated timber (CLT) rocking walls, CLB rocking walls with conventional friction dampers (CFDs) are studied in this paper. To investigate the mechanical properties of the CLB rocking wall, seven tests are conducted under a cyclic loading scheme, and different test parameters, including the existence of the CFDs, the moment ratio, and the loading times, are discussed. The test results show a bilinear behavior of the CLB rocking wall. The small residual displacements of the CLB rocking wall demonstrate an idealized… More

  • Graphical Abstract

    An Experimental and Analytical Study on Cross-Laminated Bamboo Rocking Walls with Friction Dampers
  •   Views:744       Downloads:461        Download PDF
  • Effect of Encapsulation Combined with Microwave Heating on Self-Healing Performance of Asphalt Mixture
  • Abstract As an innovative maintenance technology of asphalt pavement, encapsulated rejuvenator used to improve its self-healing performance has been widely investigated by researchers in recent years. In this work, the selfhealing properties of asphalt mixture with and without encapsulations were comparatively studied considering these parameters: Healing time, healing cycles and microwave heating. Three-point bending strength recovery test and fatigue loading cycles recovery test were conducted for two kinds of encapsulations containing the healing agents present inside the asphalt mixture, namely compartmented Ca-alginate/SiO2 fiber and compartmented Ca-alginate/graphene oxide fiber. The results showed that the optimum healing time was three days. After the… More
  •   Views:1009       Downloads:542        Download PDF
  • Study on Improvement of Hygroscopicity of Magnesite-Bonded Wood Wool Panel
  • Abstract Magnesite-bonded wood wool panel (MWWP) is an inorganic-bonded panel product in which wood excelsior is bonded with magnesite. Lowering the hygroscopicity is one of the key measures to improve the quality of the panel. In this study, moisture absorption mechanism of MWWP and measures generally applied to lower its hygroscopicity were reviewed. Three methods were then experimented to improve the dimensional stability of the panel, including adjusting the molar ratio of raw materials, adding additives and optimizing the conditioning process. The results showed that satisfying dimensional stability could be achieved when the molar ratio of MgO to MgCl2 was 5:1,… More
  • Graphical Abstract

    Study on Improvement of Hygroscopicity of Magnesite-Bonded Wood Wool Panel
  •   Views:823       Downloads:560        Download PDF
  • Pore Structure Characteristics of Baking-Free Slag-Sludge Bricks and Its Correlations to Mechanical Properties
  • Abstract In order to explore the relationship between the macroscopic properties and pore structure characteristics of baking-free slag-sludge bricks, the compressive strength and water absorption rate using aluminum industrial slag and sludge of different substitution rates were tested. Optical instruments and image analysis software were used to measure the parameters of the pore structure. Specifically, a fractal model was built based on the fractal theory, in which the fractal dimension was used as the characteristic index of the pore structure to analyze the correlation and interaction mechanism between the fractal dimension and the macroscopic mechanical properties. Based on this study, conclusions… More
  •   Views:1184       Downloads:634        Download PDF