Home / Journals / JRM / Vol.11, No.8, 2023
Special lssues
Table of Content
cover

On the Cover


The performance of inorganic CsPbI3 perovskite solar cells (PSCs) is greatly limited by intrinsic defects. The present work reports a facile strategy to modify the surface and grain boundaries of CsPbI3 perovskite by using a novel organic ammonium halide, which effectively passivates the intrinsic defects and promotes the efficiency of CsPbI3 PSCs to 17.87%.

View this paper

  • Open AccessOpen Access

    SHORT COMMUNICATION

    Treating CsPbI3 Perovskite with Pyrrolidinium Iodide to Improve the Performance of Perovskite Solar Cells

    Qixian Zhang#, Yi Guo#, Huicong Liu, Weiping Li, Liqun Zhu, Haining Chen*
    Journal of Renewable Materials, Vol.11, No.8, pp. 3193-3201, 2023, DOI:10.32604/jrm.2023.027730
    (This article belongs to the Special Issue: Perovskite Solar Cells)
    Abstract All-inorganic CsPbI3 perovskite has attracted wide attention due to its desirable optical bandgap (Eg: ∼1.7 eV) as well as high chemical stability. Nevertheless, the photovoltaic performance of CsPbI3 perovskite solar cells (PSCs) was limited by severe nonradiative charge recombination due to high defect density at the grain boundary and surface of perovskite films. To address this issue, a pyrrolidinium iodide (PyI) molecule was introduced to modify the surface and grain boundary of CsPbI3 perovskite films to passivate defects, which improves the quality of CsPbI3 perovskite films as well as induces the generation of a quasi-2D Py2CsPb2I7 capping layer… More >

    Graphic Abstract

    Treating CsPbI<sub>3</sub> Perovskite with Pyrrolidinium Iodide to Improve the Performance of Perovskite Solar Cells

  • Open AccessOpen Access

    REVIEW

    Cellulose-Based Films for Food Packaging Applications: Review of Preparation, Properties, and Prospects

    Xiaoyan Liu1,2, Zhao Qin1,2,*, Yuxiang Ma1,2, Huamin Liu1,2,*, Xuede Wang1,2
    Journal of Renewable Materials, Vol.11, No.8, pp. 3203-3225, 2023, DOI:10.32604/jrm.2023.027613
    (This article belongs to the Special Issue: Advances in Application of Biomass-Based Materials in Food Industry)
    Abstract Packaging is a food preservation technology widely used in the world. Naturally-sourced, biodegradable polymers are becoming increasingly popular in the food packaging sector. Packaging films prepared using cellulose as raw material would contribute to resource sustainability, but the difficulty of cellulose solubilization limits their further development. In view of this, a series of novel solvent systems (LiCl/DMAc, ILs, TBAH/DMSO, NMMO, alkali/urea solutions, metal-complex solutions) were used to prepare high-strength and high-performance cellulose-based films; their characteristics and the mechanisms involved were investigated. Composite films prepared by blending cellulose with various polymers (synthetic polymers, natural polymers, proteins More >

    Graphic Abstract

    Cellulose-Based Films for Food Packaging Applications: Review of Preparation, Properties, and Prospects

  • Open AccessOpen Access

    ARTICLE

    Surfactant-Modified Hydrophobic Biochar Derived from Laver (Porphyra haitanensis) with Superior Removal Performance for Kitchen Oil

    Jiaxing Sun1, Lili Ji1,*, Qianrui He1, Ran Li1, Xiaoyue Xia2, Yaning Wang1, Yi Yang2, Lu Cai3, Jian Guo2
    Journal of Renewable Materials, Vol.11, No.8, pp. 3227-3243, 2023, DOI:10.32604/jrm.2023.027160
    (This article belongs to the Special Issue: Biochar Based Materials for a Green Future)
    Abstract

    In this study, a novel absorpent (MSAR600°C) with a hydrophobic surface and hierarchical porous structure for the removal of kitchen oil was facilely fabricated from the macroalgae, laver (Porphyra haitanensis) by incorporating high-temperature carbonization and alkyl polyglucosides (APG) and rhamnolipid (RL) surfactants modification. The characterization results showed MSAR600°C possessed a louts-leaf-like papillae microstructure with high contact angle (137.5°), abundant porous structure with high specific surface area (23.4 m2/g), and various oxygen-containing functional groups (-OH, C=O, C-O). Batch adsorption experiments were conducted to investigate the effect of adsorption time, temperature, pH, and absorbent dose on kitchen oil adsorption

    More >

    Graphic Abstract

    Surfactant-Modified Hydrophobic Biochar Derived from Laver (<i>Porphyra haitanensis</i>) with Superior Removal Performance for Kitchen Oil

  • Open AccessOpen Access

    ARTICLE

    Study on the Preparation Process Optimization of Plywood Based on a Full Biomass Tannin-Sucrose Wood Adhesive

    Wen Gu#, Xinyue Ding#, Min Tang*, Feiyan Gong*, Shuangshuang Yuan, Jintao Duan
    Journal of Renewable Materials, Vol.11, No.8, pp. 3245-3259, 2023, DOI:10.32604/jrm.2023.027461
    Abstract Biomass adhesive is conducive to decreasing the dependence of the wood adhesive industry on synthetic resin based on fossil resources and improving the market competitiveness of adhesives. It is also a critical breakthrough to realize the goal of carbon peaking and carbon neutrality in the wood industry. In this study, a full biomass wood adhesive composed of tannin and sucrose was developed and applied successfully to the preparation of plywood. The preparation technique of plywood was optimized, and the chemical structure, curing performance, crystallization property and thermal performance of the adhesive were investigated. Results showed… More >

  • Open AccessOpen Access

    ARTICLE

    Effect of Fibre Size on Mechanical Properties and Surface Roughness of PLA Composites by Using Fused Deposition Modelling (FDM)

    Aida Haryati Jamadi1, Nadlene Razali1,3,*, Sivakumar Dhar Malingam1,3, Mastura Mohammad Taha2,3
    Journal of Renewable Materials, Vol.11, No.8, pp. 3261-3276, 2023, DOI:10.32604/jrm.2023.028280
    (This article belongs to the Special Issue: Bio-Fibres, Biopolymers and Biocomposites – Design for Sustainability, Life Cycle Analysis, Concurrent Materials and Conceptual Design Selection)
    Abstract Natural fibre as a reinforcing agent has been widely used in many industrial applications. Nevertheless, several factors need to be considered, such as the size and weight percentage of the fibre used in binding. Using fused deposition modelling (FDM), this factor was investigated by varying the size of natural fibre as the responding variable with a fixed weight percentage of kenaf fibre. The process of modifying the natural fibre in terms of size might increase the dispersion of kenaf fibre in the polymer matrix and increase the adhesion bonding between the fibre and matrix of… More >

  • Open AccessOpen Access

    ARTICLE

    The Characteristics of Glued Tensile Shear Strength Constituted of Wood Cut by CO2 Laser

    Fatemeh Rezaei1,2,*, Milan Gaff1,3,4,*, Róbert Nemeth5, Jerzy Smardzewski6, Peter Niemz7, Haitao Li8,9, Anil Kumar Sethy1,10, Luigi Todaro11, Gourav Kamboj1, Sumanta Das1, Roberto Corleto1, Gianluca Ditommaso1, Miklós Bak5
    Journal of Renewable Materials, Vol.11, No.8, pp. 3277-3296, 2023, DOI:10.32604/jrm.2023.028352
    Abstract The performance of engineered wood products is highly associated with proper bonding and an efficient cutting method. This paper investigates the influence of CO2 laser cutting on the wetting properties, the modified chemical component of the laser-cut surface, and the strength and adhesive penetration near the bondline. Beechwood is cut by the laser with varying processing parameters, cutting speeds, gas pressures, and focal point positions. The laser-cut samples were divided into two groups, sanded and non-sanded samples. Polyvinyl acetate adhesive (PVAc) was used to bond the groups of laser-cut samples. After assembly with cold pressing, the… More >

  • Open AccessOpen Access

    ARTICLE

    Microstructural Dependence of Friction and Wear Behavior in Biological Shells

    Xin Wang1,3, Ying Yan1,3, Hongmei Ji1,3,*, Xiaowu Li1,2,*
    Journal of Renewable Materials, Vol.11, No.8, pp. 3297-3308, 2023, DOI:10.32604/jrm.2023.027066
    (This article belongs to the Special Issue: Microstructure-Related Toughening Mechanisms in Biological, Biobased or Bioinspired Materials)
    Abstract As an essential renewable mineral resource, mollusk shells can be used as handicrafts, building materials, adsorbents, etc. However, there are few reports on the wear resistance of their structures. The Vicker’s hardness and friction, and wear resistance of different microstructures in mollusk shells were comparatively studied in the present work. The hardness of prismatic structures is lower than that of cross-lamellar and nacreous structures. However, the experimental results of sliding tests indicate that the prismatic structure exhibits the best anti-wear ability compared with foliated, crossed-lamellar, and nacreous structures. The anti-wear and hardness do not present More >

    Graphic Abstract

    Microstructural Dependence of Friction and Wear Behavior in Biological Shells

  • Open AccessOpen Access

    ARTICLE

    The Microparticles SiOx Loaded on PAN-C Nanofiber as Three-Dimensional Anode Material for High-Performance Lithium-Ion Batteries

    Jiahao Wang1, Jie Zhou2, Zhengping Zhao2,*, Feng Chen1, Mingqiang Zhong1
    Journal of Renewable Materials, Vol.11, No.8, pp. 3309-3332, 2023, DOI:10.32604/jrm.2023.027278
    Abstract Three-dimensional C/SiOx nanofiber anode was prepared by polydimethylsiloxane (PDMS) and polyacrylonitrile (PAN) as precursors via electrospinning and freeze-drying successfully. In contrast to conventional carbon covering Si-based anode materials, the C/SiOx structure is made up of PAN-C, a 3D carbon substance, and SiOx loading steadily on PAN-C. The PAN carbon nanofibers and loaded SiOx from pyrolyzed PDMS give increased conductivity and a stable complex structure. When employed as lithium-ion batteries (LIBs) anode materials, C/SiOx-1% composites were discovered to have an extremely high lithium storage capacity and good cycle performance. At a current density of 100 mA/g, More >

    Graphic Abstract

    The Microparticles SiOx Loaded on PAN-C Nanofiber as Three-Dimensional Anode Material for High-Performance Lithium-Ion Batteries

  • Open AccessOpen Access

    ARTICLE

    Study on Influencing Factors of Methane Production Efficiency of Microbial Electrolytic Cell with CO2 as Carbon Source

    Qifen Li, Yuanbo Hou*, Yongwen Yang, Liting Zhang, Xiaoxiao Yan
    Journal of Renewable Materials, Vol.11, No.8, pp. 3333-3350, 2023, DOI:10.32604/jrm.2023.027464
    (This article belongs to the Special Issue: New Trends in Renewable and Sustainable Materials for Carbon Neutrality)
    Abstract Reducing CO2 to produce methane through microbial electrolytic cell (MEC) is one of the important methods of CO2 resource utilization. In view of the problem of low methanogenesis rate and weak CO2 conversion rate in the reduction process, the flow field environment of the cathode chamber is changed by changing the upper gas circulation rate and the lower liquid circulation rate of the cathode chamber to explore the impact on the reactor startup and operation and products. The results showed that under certain conditions, the CO2 consumption and methane production rate could be increased by changing the… More >

  • Open AccessOpen Access

    ARTICLE

    Study on Mechanical Properties of High Fine Silty Basalt Fiber Shotcrete Based on Orthogonal Design

    Jinxing Wang1,2,3, Yingjie Yang1,2,3, Xiaolin Yang1,2,3, Huazhe Jiao1,2,3,4,*, Qi Wang1,2,3, Liuhua Yang1,2,3, Jianxin Yu1,2,3, Fengbin Chen1,2,3
    Journal of Renewable Materials, Vol.11, No.8, pp. 3351-3370, 2023, DOI:10.32604/jrm.2023.027512
    Abstract In order to improve the comprehensive utilization rate of high fines sand (HFS) produced by the mine, full solid waste shotcrete (HFS-BFRS) was prepared with HFS as fine aggregate in cooperation with basalt fiber (BF). The strength growth characteristics of HFS-BFRS were analyzed. And the fitting equation of compressive strength growth characteristics of HFS-BFRS under the synergistic effect of multiple factors was given. And based on the orthogonal experimental method, the effects on the compressive strength, splitting tensile strength and flexural strength of HFS-BFRS under the action of different levels of influencing factors were investigated.… More >

  • Open AccessOpen Access

    ARTICLE

    Investigation of the Thermal Decomposition Behavior of Oleuropein with Many Pharmacological Activities from Olive by Thermogravimetry

    Jiaojiao Yuan1, Su Tuo1, Yangyang Liu1, Jing He1, Shao-Hwa Hu1, Junling Tu2,*
    Journal of Renewable Materials, Vol.11, No.8, pp. 3371-3385, 2023, DOI:10.32604/jrm.2023.028046
    (This article belongs to the Special Issue: Renewable Biomass as a Platform for Preparing Green Chemistry)
    Abstract

    Due to the existence of poly-hydroxyl structures, the temperature may have an effect on the thermal stability of oleuropein for its applications. In the current study, the thermal decomposition process and kinetics behavior of oleuropein from the olive resource were researched by thermogravimetric theoretical analysis methods and non-isothermal kinetics simulation. The results of thermogravimetry analysis showed the whole thermal decomposition process of oleuropein involved two stages, with 21.22% of residue. It was also revealed that high heating rates of more than 20 K min−1 led to significant thermal hysteresis and inhibited the whole thermal decomposition behavior

    More >

    Graphic Abstract

    Investigation of the Thermal Decomposition Behavior of Oleuropein with Many Pharmacological Activities from Olive by Thermogravimetry

  • Open AccessOpen Access

    ARTICLE

    Effects of Filler-Asphalt Ratio on the Properties of Lignin and Polyester Fiber Reinforced SMPU/SBS Modified Asphalt Mortar

    Wenjing Xia1,*, JinHui Wang1, Tao Xu1, Nan Jiang2
    Journal of Renewable Materials, Vol.11, No.8, pp. 3387-3402, 2023, DOI:10.32604/jrm.2023.026971
    (This article belongs to the Special Issue: Environmentally Friendly and Renewable Civil Engineer Materials)
    Abstract To understand the effects of filler-asphalt ratio on different properties of lignin and polyester fiber reinforced shape memory polyurethane (SMPU)/styrene butadiene styrene (SBS) composite modified asphalt mortar (PSAM), as well as to reveal the reinforcing and toughening mechanisms of lignin and polyester fibers on PSAM, SMPU, SBS and mineral powder were first utilized to prepare PSAM. Then the conventional, rheological and anticracking properties of lignin fiber reinforced PSAM (LFAM) and polyester fiber reinforced PSAM (PFAM) at different filler-asphalt ratios were characterized. Test results indicate that the shear strength, deformation resistance and viscosity are increased after… More >

    Graphic Abstract

    Effects of Filler-Asphalt Ratio on the Properties of Lignin and Polyester Fiber Reinforced SMPU/SBS Modified Asphalt Mortar

Per Page:

Share Link