Home / Journals / JRM / Vol.13, No.5, 2025
Special Issues
Table of Content
cover

On the Cover

This research is about improving the value of agave bagasse residues by extracting cellulose to develop eco-friendly composite materials for biomedical applications. The materials combine agave cellulose fibers, green-synthesized silver nanoparticles, and shrimp chitosan to enhance antibacterial properties. The goal was to repurpose agro-industrial and marine residues to create affordable wound care materials with broad antimicrobial activity. The synergy between cellulose, chitosan, and silver nanoparticles enhanced and amplified the antibacterial properties, and this was evaluated based on the size and concentration of the nanoparticles.

View this paper

  • Open AccessOpen Access

    ARTICLE

    Facile Crosslinking of Hardwood Kraft Lignin for Sustainable Bio-Based Wood Adhesives

    Ega Cyntia Watumlawar1, Byung-Dae Park1,*, Long Yang2, Guanben Du2
    Journal of Renewable Materials, Vol.13, No.5, pp. 829-848, 2025, DOI:10.32604/jrm.2025.02024-0056 - 20 May 2025
    (This article belongs to the Special Issue: Renewable and Biosourced Adhesives-2023)
    Abstract As the most abundant aromatic bio-based polymer, lignin has great potential as a sustainable feedstock for building crosslinked thermoset polymers as bio-based adhesives. However, the potential of hardwood kraft lignin (HKL) is limited due to its poor crosslinking reactivity. Hence, for the first time, the present study reports the facile oxidation of HKL involving a redox reaction with silver-ammonia complexes ([(AgNH3)2]+), primarily focusing on oxidation to produce reactive quinones and promote C–C linkages during reaction. This study aims to increases reactivity of oxidized HKL for effective crosslinking with monoethanolamine (MEA) for the development of bio-based wood… More >

    Graphic Abstract

    Facile Crosslinking of Hardwood Kraft Lignin for Sustainable Bio-Based Wood Adhesives

  • Open AccessOpen Access

    ARTICLE

    Eco-Friendly Materials Composed of Cellulose Fibers from Agave Bagasse with Silver Nanoparticles and Shrimp Chitosan

    Belkis Sulbarán-Rangel1,*, Jorge Armando Caldera Siller1, Salvador García Enríquez2, José Anzaldo-Hernandez2, Jenny Arratia-Quijada3, Marianelly Esquivel Alfaro4
    Journal of Renewable Materials, Vol.13, No.5, pp. 849-863, 2025, DOI:10.32604/jrm.2025.02024-0061 - 20 May 2025
    Abstract In this research, the antibacterial properties of a composite material prepared from agave bagasse cellulose fibers doped with silver nanoparticles and chitosan were studied. The development of composite materials with antibacterial properties and environmentally friendly based on cellulose fibers from agave bagasse with silver nanoparticles prepared by green synthesis and chitosan from shrimp waste enhances the value of these agro-industrial wastes and offers the opportunity for them to have biomedical applications since these raw materials have been poorly reported for this application. The antibacterial properties of chitosan and silver nanoparticles are already known. However, the… More >

    Graphic Abstract

    Eco-Friendly Materials Composed of Cellulose Fibers from Agave Bagasse with Silver Nanoparticles and Shrimp Chitosan

  • Open AccessOpen Access

    REVIEW

    Deashing of Agricultural Residues and Its Impact on Isolated Lignin Properties: A Mini Review

    Eko Budi Santoso1,2, Nur Izyan Wan Azelee3,4, Deded Sarip Nawawi2, Wasrin Syafii2,*, Widya Fatriasari2,5,*
    Journal of Renewable Materials, Vol.13, No.5, pp. 865-884, 2025, DOI:10.32604/jrm.2025.058804 - 20 May 2025
    Abstract The significant amount of ash content in agricultural biomass presents an enormous challenge for efficient conversion processes. In addressing this issue, various deashing treatments have been tested and established, including simple leaching techniques, which can either be performed with or without the addition of chemical agents. These techniques hold promise for improving the deashing efficiency while potentially altering the structural and chemical composition of biomass, specifically lignin content, which is the key focus of this review. This review starts by exploring the presence of ash in agricultural residues and its impact on biomass properties. Next,… More >

    Graphic Abstract

    Deashing of Agricultural Residues and Its Impact on Isolated Lignin Properties: A Mini Review

  • Open AccessOpen Access

    ARTICLE

    Preparation of N,S-Doped Biochar via Modulating Chitosan and Sodium Dodecyl Benzene Sulfonate Interaction and Its Adsorption Performance

    Jun-Jie Yang1, Ran An1, Jing-Heng Nie1, Hao-Miao Ma1, Yu-Qing Yan1, Yuan-Ru Guo1,*, Qing-Jiang Pan2,*
    Journal of Renewable Materials, Vol.13, No.5, pp. 885-900, 2025, DOI:10.32604/jrm.2025.02024-0066 - 20 May 2025
    (This article belongs to the Special Issue: Biochar Based Materials for a Green Future)
    Abstract To achieve the sustainable development and carbon neutral target, biomass chitosan (CS) was used to prepare N,S-doped biochar (NSB) with the assistance of sodium dodecyl benzene sulfonate (SDBS). The synthetic route was developed, which does not require the activation that is frequently-used for active carbon materials. By manipulating their interaction, SDBS was deposited with CS in neutral and basic conditions. Subsequent calcination successfully has access to NSB. It features with hierarchical porous structure and abundant functional groups. The dually-doped NSB bears excellent adsorption performance towards chlortetracycline (CTC). The adsorption capacity reaches 101.3 mg g−1 within 4 More >

  • Open AccessOpen Access

    REVIEW

    Physical, Mechanical and Chemical Properties as a Decision-Support Tool to Promote Alternative Woods: Case of Dabema (Piptadeniastrum africanum) in Cameroon

    John Nwoanjia1, Jean Jalin Eyinga Biwôlé1,2,*, Joseph Zobo Mfomo1, Evariste Fedoung Fongnzossie1, Antonio Pizzi2, Salomé Ndjakomo Essiane3, Achille Bernard Biwole1
    Journal of Renewable Materials, Vol.13, No.5, pp. 901-914, 2025, DOI:10.32604/jrm.2025.02024-0005 - 20 May 2025
    Abstract This review aims to identify the assets and limitations of Dabema (Piptadeniastrum africanum) as a sustainable alternative to traditional timber species for furniture and construction applications. Dabema is characterized by its high density and dimensional stability, meeting ASTM (American Society for Testing and Materials) standards for mechanical strength, which is essential for promoting its use. However, its limited availability in trade and ingrained habits of use are obstacles to its widespread commercialization. In addition, thermal and oleothermal treatments have shown great potential for improving the characteristics of this wood, although they require ongoing optimization and rigorous More >

    Graphic Abstract

    Physical, Mechanical and Chemical Properties as a Decision-Support Tool to Promote Alternative Woods: Case of Dabema (<i>Piptadeniastrum africanum</i>) in Cameroon

  • Open AccessOpen Access

    ARTICLE

    Plasticized Agar-Carboxymethyl Cellulose Based Composites Properties Reinforced with Nanocellulose

    Vahideh Pourghasemi-Soufiani1, Farid Amidi-Fazli1,2,*
    Journal of Renewable Materials, Vol.13, No.5, pp. 915-929, 2025, DOI:10.32604/jrm.2025.02024-0009 - 20 May 2025
    Abstract Biodegradable packaging has emerged as a viable alternative to non-biodegradable polymers. This study explores different treatments of agar-carboxymethyl cellulose (CMC) nanocomposites developed via the casting method. We investigated the effects of varying glycerol levels (20%–60%) as a plasticizer and nanocellulose levels (0%–30%) as a filler on the properties of agar-CMC nanocomposites. Key properties analyzed included water vapor permeability, solubility in water, moisture absorption, water contact angle, color properties, and mechanical properties. The films exhibited low water vapor permeability, ranging from 2.50 × 10−11 g/msPa to 2.23 × 10−12 g/msPa. Water solubility of the films was below… More >

    Graphic Abstract

    Plasticized Agar-Carboxymethyl Cellulose Based Composites Properties Reinforced with Nanocellulose

  • Open AccessOpen Access

    ARTICLE

    Research on the Hydrophobic Performance of Bamboo Surface Treated via Coordinated Plasma and PDMS Solution Treatments

    Zihan Ma1,2, Yan Wu1, Hongyan Wang2,*, Shaofei Yuan2, Jian Zhang2
    Journal of Renewable Materials, Vol.13, No.5, pp. 931-955, 2025, DOI:10.32604/jrm.2025.02024-0040 - 20 May 2025
    (This article belongs to the Special Issue: Modification and Functionalization of Wood)
    Abstract Herein, the surface of Moso bamboo was hydrophobically modified by combining O2/N2 plasma treatments with polydimethylsiloxane (PDMS) solution treatment as the hydrophobic solution. The effects of plasma treatment process (power and time), PDMS solution concentration, and maceration time on the hydrophobic performance of bamboo specimens were studied, and the optimal treatment conditions for improving the hydrophobicity were determined. Scanning electron microscopy (SEM), fourier transform infrared (FTIR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to analyze the surface morphology, chemical structure, and functional groups in the specimens before and after the plasma and PDMS… More >

    Graphic Abstract

    Research on the Hydrophobic Performance of Bamboo Surface Treated via Coordinated Plasma and PDMS Solution Treatments

  • Open AccessOpen Access

    ARTICLE

    Development of Filter Composites Based on Eucalyptus Cellulosic Nanofibers, Sugarcane Bagasse Fibers and Soybean Hulls Applied in Biodiesel Purification

    Flávia Naves Ferreira do Prado1, Michelle Garcia Gomes1, Marcela Piassi Bernardo1, Daniel Pasquini1,*, Anízio Márcio de Faria2, Luís Carlos de Morais3,*
    Journal of Renewable Materials, Vol.13, No.5, pp. 957-980, 2025, DOI:10.32604/jrm.2025.02024-0014 - 20 May 2025
    Abstract Alternative methods for biodiesel purification that focus on ease of operation, cost reduction, and elimination of contaminated residues or that are easier to treat have received more attention. The dry wash route was used as an alternative to the wet route in biodiesel production. Filter membranes were developed based on cellulose nanofibers as the matrix and sugarcane bagasse fibers or soy hulls, as reinforcement to the matrix, before and after two chemical treatments (carboxymethylation and regeneration with sulfuric acid). The filters were characterized by permeability capacity, morphology, wettability, porosity, SEM and mechanical properties. The filtered… More >

    Graphic Abstract

    Development of Filter Composites Based on Eucalyptus Cellulosic Nanofibers, Sugarcane Bagasse Fibers and Soybean Hulls Applied in Biodiesel Purification

  • Open AccessOpen Access

    ARTICLE

    Amphiphilic Carboxymethyl Cellulose Stearate for Pickering Emulsions and Antimicrobial Activity of Chrysanthemum Essential Oil

    Mohamed El-Sakhawy1,*, Sally A. Abdel-Halim2, Hebat-Allah S. Tohamy1, Hossam M. El-Masry3, Mona Mohamed AbdelMohsen2
    Journal of Renewable Materials, Vol.13, No.5, pp. 981-995, 2025, DOI:10.32604/jrm.2025.02024-0024 - 20 May 2025
    Abstract This study prepared and characterized amphiphilic carboxymethyl cellulose stearate (CMCS) recycled from sugarcane bagasse agro-waste (SB). The Fourier-transform infrared (FTIR) analysis confirmed cellulose, carboxymethyl cellulose (CMC), and CMCS structures, with CMCS showing increased H-bonding. X-ray diffraction analysis (XRD) revealed reduced crystallinity in CMC and CMCS. CMCS exhibited a hydrophobic nature but dispersed in water, enabling nanoemulsion formation. Optimal nanoemulsion was achieved with CMCS1, showing a particle size of 99 nm. Transmission electron microscopy (TEM) images revealed CMC’s honeycomb structure, transforming into spherical particles in CMCS1. Antimicrobial tests demonstrated strong activity of CMCS formulations against Escherichia coli More >

  • Open AccessOpen Access

    ARTICLE

    Stepwise Pretreatment of Pulsed Electric Fields and Solid Substrate Fermentation Using Pleurotus ostreatus on Coconut Dregs

    Wenny Surya Murtius1,2,*, Bambang Dwi Argo3,*, Irnia Nurika1, Sukardi1
    Journal of Renewable Materials, Vol.13, No.5, pp. 997-1020, 2025, DOI:10.32604/jrm.2025.02024-0004 - 20 May 2025
    (This article belongs to the Special Issue: Special issue from 1st International Conference of Natural Fiber and Biocomposite (1st ICONFIB) 2024 )
    Abstract A stepwise pretreatment process for coconut dregs (CD) has been investigated to enhance availability of hemicellulose. Recently, lignocellulose-rich agricultural waste such as CD has garnered substantial attention as a sustainable raw material for producing value-added bio-products. To optimize the process variables within the stepwise pretreatment using Pulsed Electric Field (PEF) and Solid-State Fermentation (SSF), Response Surface Methodology (RSM) based on Central Composite Design (CCD) was employed. PEF, a non-thermal physical treatment, offers advantages such as low energy consumption and reduced processing times, while SSF utilizes Pleurotus ostreatus to promote biodegradation. A statistical model was constructed using… More >

    Graphic Abstract

    Stepwise Pretreatment of Pulsed Electric Fields and Solid Substrate Fermentation Using <i>Pleurotus ostreatus</i> on Coconut Dregs

Per Page:

Share Link