Home / Journals / JRM / Vol.12, No.7, 2024
Special Issues
Table of Content
cover

On the Cover

This study shows a straightforward and safe way of preparing lignin-based non-isocyanate polyurethane (NIPU) adhesives using two kinds of technical lignin for wood bonding. These NIPU adhesives provided strong adhesion and nearly no formaldehyde emission with plywood. These results showed a great potential of lignin as a bio-polyol for synthesizing lignin-based NIPU adhesives for wood bonding.

View this paper

  • Open AccessOpen Access

    REVIEW

    Overview of the Synthesis, Characterization, and Application of Tannin-Glyoxal Adhesive for Wood-Based Composites

    Awanda Wira Anggini1,2, Rita Kartika Sari2, Efri Mardawati3,4, Tati Karliati5, Apri Heri Iswanto6, Muhammad Adly Rahandi Lubis1,4,*
    Journal of Renewable Materials, Vol.12, No.7, pp. 1165-1186, 2024, DOI:10.32604/jrm.2024.051854
    (This article belongs to the Special Issue: Environmentally Friendly Wood-Based Composites Based on Sustainable Technologies and Renewable Materials)
    Abstract More than a century after its initial synthesis, urea-formaldehyde (UF) resins still have dominant applications as adhesives, paints, and coatings. However, formaldehyde in this industry produces formaldehyde emissions that are dangerous to health. Scientists have spent the last decade replacing formaldehyde and phenol with environmentally friendly substances such as glyoxal and tannin to create bio-based adhesives. This review covers recent advances in synthesizing glyoxal tannin-based resins, especially those made from sustainable raw material substitutes and changes made to synthetic processes to improve mechanical properties. The efficacy of using tannin-glyoxal adhesives in producing wood-based composites has… More >

    Graphic Abstract

    Overview of the Synthesis, Characterization, and Application of Tannin-Glyoxal Adhesive for Wood-Based Composites

  • Open AccessOpen Access

    ARTICLE

    Adhesion of Technical Lignin-Based Non-Isocyanate Polyurethane Adhesives for Wood Bonding

    Jaewook Lee1, Byung-Dae Park1,*, Qinglin Wu2
    Journal of Renewable Materials, Vol.12, No.7, pp. 1187-1205, 2024, DOI:10.32604/jrm.2024.049948
    Abstract Lignin is the most abundant aromatic natural polymer, and receiving great attention in replacing various petroleum-based polymers. The aim of this study is to investigate the feasibility of technical lignin as a polyol for the synthesis of non-isocyanate polyurethane (NIPU) adhesives to substitute current polyurethane (PU) adhesives that have been synthesized with toxic isocyanate and polyols. Crude hardwood kraft lignin (C-HKL) was extracted from black liquor from a pulp mill followed by acetone fractionation to obtain acetone soluble-HKL (AS-HKL). Then, C-HKL, AS-HKL, and softwood sodium lignosulfonate (LS) were used for the synthesis of technical lignin-based… More >

    Graphic Abstract

    Adhesion of Technical Lignin-Based Non-Isocyanate Polyurethane Adhesives for Wood Bonding

  • Open AccessOpen Access

    ARTICLE

    Conversion of Lignin into Porous Carbons for High-Performance Supercapacitors via Spray Drying and KOH Activation: Structure-Properties Relationship and Reaction Mechanism

    Shihao Feng1,2,3, Qin Ouyang1,2,*, Jing Huang1,2, Xilin Zhang3, Zhongjun Ma4, Kun Liang1,2, Qing Huang1,2,*
    Journal of Renewable Materials, Vol.12, No.7, pp. 1207-1218, 2024, DOI:10.32604/jrm.2024.052579
    Abstract Lignin-derived porous carbons have emerged as promising electrode materials for supercapacitors. However, the challenge remains in designing and controlling their structure to achieve ideal electrochemical performance due to the complex molecular structure of lignin and its intricate chemical reactions during the activation process. In this study, three porous carbons were synthesized from lignin by spray drying and chemical activation with varying KOH ratios. The specific surface area and structural order of the prepared porous carbon continued to increase with the increase of the KOH ratio. Thermogravimetric-mass spectrometry (TG-MS) was employed to track the molecular fragments More >

    Graphic Abstract

    Conversion of Lignin into Porous Carbons for High-Performance Supercapacitors via Spray Drying and KOH Activation: Structure-Properties Relationship and Reaction Mechanism

  • Open AccessOpen Access

    ARTICLE

    Advanced Nanocomposite Arabic Gum Polyacrylic Acid Hydrogels for Flexible Supercapacitors

    Borhan Albiss*, Asala Saleh
    Journal of Renewable Materials, Vol.12, No.7, pp. 1219-1236, 2024, DOI:10.32604/jrm.2024.050685
    (This article belongs to the Special Issue: Regenerative Hydrogels from Natural and Synthetic Materials)
    Abstract In this work, the fabrication and characterization of the nanocomposite hydrogel, as a solid electrode in electrochemical cell and gel electrolyte material using Indium titanium oxide/polyethylene terephthalate (ITO/PET) flexible substrate for double-layer supercapacitors have been reported. The nanocomposite hydrogel composed of Arabic gum (AG), Acrylic acid (AA), reduced graphene oxide (RGO), and silver nanoparticles (AgNPs) was fabricated via a physical cross-linked polymerization reaction, in which the ascorbic acid was used as a reducing agent to generate AgNPs and to convert Graphene oxide (GO) to RGO during the polymerization reaction. The morphology and structural characteristics of… More >

    Graphic Abstract

    Advanced Nanocomposite Arabic Gum Polyacrylic Acid Hydrogels for Flexible Supercapacitors

  • Open AccessOpen Access

    REVIEW

    A Review on the Advancement of Renewable Natural Fiber Hybrid Composites: Prospects, Challenges, and Industrial Applications

    Mohammed Mohammed1,2,*, Jawad K. Oleiwi3, Aeshah M. Mohammed4, Anwar Ja’afar Mohamad Jawad5, Azlin F. Osman1,2, Tijjani Adam6, Bashir O. Betar7, Subash C. B. Gopinath2,8,9
    Journal of Renewable Materials, Vol.12, No.7, pp. 1237-1290, 2024, DOI:10.32604/jrm.2024.051201
    (This article belongs to the Special Issue: Natural Fibre Reinforced Polymer Composites: Processing, Manufacturing, Characterizations and Environmentally Friendly Applications)
    Abstract Natural fibre (NFR) reinforced functional polymer composites are quickly becoming an indispensable sustainable material in the transportation industry because of their lightweight, lower cost in manufacture, and adaptability to a wide variety of goods. However, the major difficulties of using these fibres are their existing poor dimensional stability and the extreme hydrophilicity. In assessing the mechanical properties (MP) of composites, the interfacial bonding (IB) happening between the NFR and the polymer matrix (PM) plays an incredibly significant role. When compared to NFR/synthetic fibre hybrid composites, hybrid composites (HC) made up of two separate NFR are… More >

    Graphic Abstract

    A Review on the Advancement of Renewable Natural Fiber Hybrid Composites: Prospects, Challenges, and Industrial Applications

  • Open AccessOpen Access

    ARTICLE

    Structural Elucidation of the Polymeric Condensed Tannins of Acacia nilotica Subspecies by 13C NMR, MALDI-TOF and TMA as Sources of Bioadhesives

    Zeinab Osman1,2,3,*, Antonio Pizzi2,*, Bertrand Charrier3
    Journal of Renewable Materials, Vol.12, No.7, pp. 1291-1310, 2024, DOI:10.32604/jrm.2024.051619
    Abstract Tannin was extracted from different subspecies of Acacia nilotica, Acacia nilotica nilotica (Ann), Acacia nilotica tomentosa (Ant) and Acacia nilotica adansonii (Ana). The aim was to elucidate their structure and evaluate their reactivity as bioadhesives in the wood industry. The extracts were prepared by hot water extraction (90°C temperature). Their gel time with paraformaldehyde was used at first to compare their reactivity. The tannin contents and the percentage of total polyphenolic materials in different solutions of the extracts spray dried powder were determined by the hide powder method. Concentrated solutions (47%) were tested by both MALDI ToF, CNMR.… More >

    Graphic Abstract

    Structural Elucidation of the Polymeric Condensed Tannins of <i>Acacia nilotica</i> Subspecies by <sup>13</sup>C NMR, MALDI-TOF and TMA as Sources of Bioadhesives

  • Open AccessOpen Access

    ARTICLE

    Thermo-Mechanical, Physico-Chemical, Morphological, and Fire Characteristics of Eco-Friendly Particleboard Manufactured with Phosphorylated Lignin Addition

    Apri Heri Iswanto1,*, Harisyah Manurung1, Asma Sohail2, Lee Seng Hua3,9, Petar Antov4, Deded Sarip Nawawi5, Sarah Latifah5, Dewi Shafa Kayla5,6, Sukma Surya Kusumah6, Muhammad Adly Rahandi Lubis6, Linda Makovická Osvaldová7, Mohd. Hazwan Hussin8, Rangabhashiyam Selvasembian9, Lum Wei Chen10, Puji Rahmawati Nurcahyani6, Nam Hun Kim11, Widya Fatriasari6
    Journal of Renewable Materials, Vol.12, No.7, pp. 1311-1341, 2024, DOI:10.32604/jrm.2024.052172
    (This article belongs to the Special Issue: Advances in Eco-friendly Wood-Based Composites: Design, Manufacturing, Properties and Applications – 2024)
    Abstract Lignin, lignosulfonate, and synthesized phosphorylated lignosulfonate were introduced as green fillers in citric acid-sucrose adhesives for bonding particleboard fabricated from areca leaf sheath (ALS). The characteristics of particleboards were compared to that of ultralow emitting formaldehyde (ULEF-UF). The fillers derived from Eucalyptus spp. kraft-lignin were added for flame retardancy enhancement. 10% of each lignin and modified lignin was added into the ULEF-UF and citric acid-sucrose bonded particleboards. Analyses applied to particleboards included thermal characteristics, X-ray diffraction analysis (XRD), morphological properties, Fourier transform infrared spectroscopy (FTIR), as well as physical, mechanical, and fire resistance characteristics of the… More >

    Graphic Abstract

    Thermo-Mechanical, Physico-Chemical, Morphological, and Fire Characteristics of Eco-Friendly Particleboard Manufactured with Phosphorylated Lignin Addition

  • Open AccessOpen Access

    ARTICLE

    Starch Orodispersible Film Loaded with Melatonin for Human Supplementation

    Fabio Tamanini1, Tatiane Zucchini de Souza1, Creusa Sayuri Tahara Amaral1, Antônio José Felix Carvalho2, Eliane Trovatti1,*
    Journal of Renewable Materials, Vol.12, No.7, pp. 1343-1354, 2024, DOI:10.32604/jrm.2024.052288
    Abstract An innovative pharmaceutical form for administering melatonin, based on starch orodispersible film (ODF), was designed and prepared. The composition of the ODF included starch as the polymer matrix, the active drug melatonin, and a plasticizer. Melatonin, a natural hormone produced by the pineal gland in the brain, can be absorbed by passive diffusion across the mucous membrane, resulting in improved bioavailability when compared to conventional oral administration. This study shows a simple and efficient method for preparing melatonin-loaded orodispersible films with a physically stable and commercially viable matrix, suitable for use in the pharmaceutical industry.… More >

Per Page:

Share Link