Home / Journals / JRM / Vol.11, No.12, 2023
Special lssues
Table of Content
cover

On the Cover


Bio-based organic‒inorganic hybrid hydrogels such as sodium alginate/sepiolite/ammonium polyphosphate hydrogel were developed to effectively prevent spontaneous combustion of coals, attributed to the intumescent flame retardant mechanism.

View this paper

  • Open AccessOpen Access

    ARTICLE

    Effect of Bio-Based Organic‒Inorganic Hybrid Hydrogels on Fire Prevention of Spontaneous Combustion of Coals

    Hu Shi, Wei Cai, Xin Wang*, Lei Song, Yuan Hu*
    Journal of Renewable Materials, Vol.11, No.12, pp. 3991-4006, 2023, DOI:10.32604/jrm.2023.029888
    Abstract To solve the fire accidents caused by coal combustion, this work prepared four hybrid hydrogel materials using bio-based polymers, flame retardants, and inorganic materials. Compared to pure water and 3.5 wt% MgCl2 solution, the as-prepared hydrogel presents good fire prevention performance. In addition, it is found that CO and CO2 are not produced by coal when the pyrolysis temperature is lower than 200°C. During low-temperature pyrolysis, CO is more likely to be produced than CO2, indicating inadequate pyrolysis behavior. At the same time, the addition of fire-preventing hydrogel can not only decrease the maximum CO2 concentration before the critical temperature… More >

    Graphic Abstract

    Effect of Bio-Based Organic‒Inorganic Hybrid Hydrogels on Fire Prevention of Spontaneous Combustion of Coals

  • Open AccessOpen Access

    ARTICLE

    Silica Gel from Chemical Glass Bottle Waste as Adsorbent for Methylene Blue: Optimization Using BBD

    Suprapto Suprapto, Putri Augista Nur Azizah, Yatim Lailun Ni’mah*
    Journal of Renewable Materials, Vol.11, No.12, pp. 4007-4023, 2023, DOI:10.32604/jrm.2023.031210
    (This article belongs to the Special Issue: Special Issue in Celebration of JRM 10 Years)
    Abstract This research focuses on the effective removal of methylene blue dye using silica gel synthesized from chemical glass bottle waste as an environmentally friendly and cost-effective adsorbent. The adsorption process was optimized using Box-Behnken Design (BBD) and Response Surface Methodology (RSM) to investigate the influence of pH (6; 8 and 10), contact time (15; 30 and 45 min), adsorbent mass (30; 50 and 70 mg), and initial concentration (20; 50 and 80 mg/L) of the adsorbate on the adsorption efficiency. The BBD was conducted using Google Colaboratory software, which encompassed 27 experiments with randomly assigned combinations. The silica gel synthesized… More >

    Graphic Abstract

    Silica Gel from Chemical Glass Bottle Waste as Adsorbent for Methylene Blue: Optimization Using BBD

  • Open AccessOpen Access

    ARTICLE

    Coordinate-Parametric Matrix Model Inspired Square-Conjoint Pattern in Cross Woven for Conventional Bamboo Mat

    Ye Fu1, Liwen Deng1,*, Jinbo Hu2,3,*, Ti Li3, Shanshan Chang2
    Journal of Renewable Materials, Vol.11, No.12, pp. 4025-4038, 2023, DOI:10.32604/jrm.2023.028454
    (This article belongs to the Special Issue: Computational Tools for Renewable Materials)
    Abstract In the study, it is proposed that a coordinate-parametric matrix model is performed to a square-conjoint pattern of cross woven (SCPCW) in the bamboo mat. The patterns of SCPCW are firstly detected according to the perspective of configuration, which is divided into the basic-monomer shape and the basic combination shape. Secondly, the compositions of design patterns in SCPCW are analyzed to attain the trend of curve shape. Based on the coordinate-parametric matrix model, the specimens of SCPCW are subsequently accomplished to elaborate the woven logic of bamboo mats. The digital innovation of SCPCW, defined by a mathematical resolution, is implemented… More >

    Graphic Abstract

    Coordinate-Parametric Matrix Model Inspired Square-Conjoint Pattern in Cross Woven for Conventional Bamboo Mat

  • Open AccessOpen Access

    ARTICLE

    Cross-Linking of Sago Starch with Furan and Bismaleimide via the Diels-Alder Reaction

    Henky Muljana*, Ivana Hasjem, Merianawati Sinatra, Dicky Joshua Pesireron, Michael Wilbert Puradisastra, Ryan Hartono, Kevin Yovan Hermanto, Tony Handoko
    Journal of Renewable Materials, Vol.11, No.12, pp. 4039-4060, 2023, DOI:10.32604/jrm.2023.031261
    Abstract This research paper describes the synthesis of thermo-reversible cross-linking of sago starch by grafting a furan pendant group (methyl 2-furoate) onto the starch backbone, followed by a Diels-Alder (DA) reaction of the furan functional group with 1,1′-(methylenedi-4,1-phenylene) bismaleimide (BM). The proof of principles was provided by FTIR and 1H-NMR analyses. The relevant FTIR peaks are the carbonyl peak (υ C=O sym) at 1721 cm−1 ; the two peaks appeared after DA cross-linking, i.e., at 1510 cm−1 (corresponding to υ CH=CH BM aromatic rings, stretching vibrations), and at 1173 cm−1 (assigned to cycloadduct (C-O-C, δ DA ring)) while the 1H-NMR result… More >

    Graphic Abstract

    Cross-Linking of Sago Starch with Furan and Bismaleimide via the Diels-Alder Reaction

  • Open AccessOpen Access

    ARTICLE

    Water Absorption Capacity and Coating Adhesion on Thermally Modified and Not-Modified Spruce Wood (Blue Stained or Free of Blue Stained)

    Demiao Chu1, Redžo Hasanagić2, Leila Fathi3, Mohsen Bahmani3,*, Miha Humar4
    Journal of Renewable Materials, Vol.11, No.12, pp. 4061-4078, 2023, DOI:10.32604/jrm.2023.043657
    (This article belongs to the Special Issue: Special Issue in Celebration of JRM 10 Years)
    Abstract This study aimed to investigate the water absorption capacity of thermally modified and non-modified spruce and blue-stained spruce wood. The wettability of wood depends on various factors, including its type, density, porosity, and surface treatment. Wood can swell and become distorted when exposed to water or humidity, impacting its structural integrity. Hence, it is crucial to consider the water and water vapour uptake in the wood when choosing materials for applications that are likely to be exposed to moisture. Various moisture absorption tests were conducted to assess water absorption capacity, including short-term and long-term water absorption and water vapour absorption.… More >

    Graphic Abstract

    Water Absorption Capacity and Coating Adhesion on Thermally Modified and Not-Modified Spruce Wood (Blue Stained or Free of Blue Stained)

  • Open AccessOpen Access

    ARTICLE

    Fluoride Ion Adsorption Effect and Adsorption Mechanism of Self-Supported Adsorbent Materials Based on Desulfurization Gypsum-Aluminate Cement

    Xuefeng Song*, Minjuan Sun, Juan He, Lei Wang
    Journal of Renewable Materials, Vol.11, No.12, pp. 4079-4095, 2023, DOI:10.32604/jrm.2023.028885
    (This article belongs to the Special Issue: Eco-Friendly Waste-Base Materials for Pollution Control Sustainable Technologies)
    Abstract The adsorption method has the advantages of low cost, high efficiency, and environmental friendliness in treating fluorinated wastewater, and the adsorbent material is the key. This study combines the inherent anion-exchange adsorption properties of layered double hydroxides (LDHs). Self-supported porous adsorbent materials loaded with AFm and AFt were prepared from a composite cementitious system consisting of calcium aluminate cement (CAC) and flue gas desulfurization gypsum (FGDG) by chemical foaming technique. The mineral composition of the adsorbent material was characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). Through the static adsorption experiment, the adsorption effect of the mineral composition… More >

    Graphic Abstract

    Fluoride Ion Adsorption Effect and Adsorption Mechanism of Self-Supported Adsorbent Materials Based on Desulfurization Gypsum-Aluminate Cement

  • Open AccessOpen Access

    ARTICLE

    Self-Cross-Linked Tannin-Aminated Tannin Surface Coatings for Particleboard

    Bengang Zhang1,*, Antonio Pizzi2,*, Mathieu Petrissans1, Anelie Petrissans1, Colin Baptiste1
    Journal of Renewable Materials, Vol.11, No.12, pp. 4097-4121, 2023, DOI:10.32604/jrm.2023.029761
    Abstract Aminated tannins were prepared by reacting mimosa condensed tannin extract with ammonia yielding the substitution of many, if not all of the tannin hydroxyl groups with –NH2 groups. A tannin-aminated tannin (ATT) particleboard coating was then prepared by reacting raw tannin extract with aminated tannin extract and thus cross-liking the two by substituting tannin’s hydroxyl groups with the –NH2 groups on the aminated tannin to form –NH-bridges between the two. The resulting particleboard coating gave encouraging results when pressed at 180°C for 3 min. Conversely, the system in which tannin was reacted/cross-liked with urea (ATU) by a similar amination reaction… More >

  • Open AccessOpen Access

    REVIEW

    Nigerian Biomass for Bioenergy Applications: A Review on the Potential and Challenges

    Adekunle A. Adeleke1,*, Nzerem Petrus2, Salihu Ayuba2, Asmau M. Yahya2, Peter P. Ikubanni3, Ikechuckwu S. Okafor2, Stephen S. Emmanuel4, Adebayo I. Olosho4, Ademidun A. Adesibikan4
    Journal of Renewable Materials, Vol.11, No.12, pp. 4123-4141, 2023, DOI:10.32604/jrm.2023.043915
    (This article belongs to the Special Issue: Advanced Renewable Mineral and Energy Materials)
    Abstract Nigeria, often referred to as “the giant of Africa,” boasts a sizable population, a thriving economy, and abundant energy resources. Nevertheless, Nigeria has yet to fully harness its renewable energy potential, despite its enormous capacity in this field. The goal of this review paper is to thoroughly examine the difficulties and untapped opportunities in utilizing biomass for bioenergy production in Nigeria. Notably, Nigeria generates substantial volumes of biomass annually, primarily in the form of agricultural waste, which is often either discarded or burned inefficiently, resulting in significant ecological and environmental damage. Therefore, an efficient approach to reducing pollution and transforming… More >

    Graphic Abstract

    Nigerian Biomass for Bioenergy Applications: A Review on the Potential and Challenges

  • Open AccessOpen Access

    ARTICLE

    Use of Additive Based on Non-Timber Forest Products for the Ecological Stabilization of Raw Earth: Case of the Parkia Biglobosa Nut and Vitellaria Paradoxa

    Bio Chéïssou Koto Tamou1,2,3, Jean-Michel Mechling2, Crespin Prudence Yabi1,*, Gildas Edjrossè F. Godonou3, Edmond Codjo Adjovi1, Mohamed Gibigaye3, André Lecomte2, Nicolas Brosse4
    Journal of Renewable Materials, Vol.11, No.12, pp. 4143-4160, 2023, DOI:10.32604/jrm.2023.030509
    (This article belongs to the Special Issue: Environmentally Friendly and Renewable Civil Engineer Materials)
    Abstract The housing sector today uses elaborate materials such as cement, iron, sand, often prohibitively expensive and whose production generates a strong environmental impact (scarcity of resources, transport, greenhouse gas greenhouse, etc.). In order to meet the challenges of sustainable development, earth construction is experiencing a resurgence of interest these days. Despite its many advantages, raw earth material has drawbacks, in particular its low mechanical resistance and its loss of geometric characteristics in the face of water, which slow down its development. As part of this study, the mechanical characteristics and durability of raw earth were improved by using residual water… More >

    Graphic Abstract

    Use of Additive Based on Non-Timber Forest Products for the Ecological Stabilization of Raw Earth: Case of the Parkia Biglobosa Nut and Vitellaria Paradoxa

  • Open AccessOpen Access

    ARTICLE

    Biomass Carbon Improves the Adsorption Performance of Gangue-Based Ceramsites: Adsorption Kinetics and Mechanism Analysis

    Haodong Li1, Huiling Du1,*, Le Kang1, Yewen Zhang1, Tong Lu1, Yuchan Zhang1, Lan Yang2, Shijie Song2
    Journal of Renewable Materials, Vol.11, No.12, pp. 4161-4174, 2023, DOI:10.32604/jrm.2023.028877
    (This article belongs to the Special Issue: Eco-Friendly Waste-Base Materials for Pollution Control Sustainable Technologies)
    Abstract The large accumulation of coal gangue, a common industrial solid waste, causes severe environmental problems, and green development strategies are required to transform this waste into high-value-added products. In this study, low-cost ceramsites adsorbents were prepared from waste gangue, silt coal, and peanut shells and applied to remove the organic dye methylene blue from wastewater. We investigated the microstructure of ceramsites and the effects of the sintering atmosphere, sintering temperature, and solution pH on their adsorption performance. The ceramsites sintered at 800°C under a nitrogen atmosphere exhibited the largest three-dimensional-interconnected hierarchical porous structure among the prepared ceramsites; further, it exhibited… More >

    Graphic Abstract

    Biomass Carbon Improves the Adsorption Performance of Gangue-Based Ceramsites: Adsorption Kinetics and Mechanism Analysis

  • Open AccessOpen Access

    ARTICLE

    Experimental Investigation on the Strength and Ductility Performance of SteelTimber-Steel Joints with Screw and Steel-Tube Fasteners

    Huifeng Yang, Mingwang Wu, Rixin Gu, Hang Cao, Kai Xiao, Benkai Shi*
    Journal of Renewable Materials, Vol.11, No.12, pp. 4175-4195, 2023, DOI:10.32604/jrm.2023.028507
    (This article belongs to the Special Issue: Bio-based Composite/Hybrid Structures and Components)
    Abstract This article presents experimental results of steel-timber-steel (STS) joints loaded parallel to grain. Eight groups of specimens were designed, and tensile tests were performed. The fastener types and fastener numbers were considered to evaluate the tensile strengths and ductility performances of the STS joints. The screws with 6 mm diameter and the innovative steel-tubes with 18 mm diameter were adopted as connecting fasteners. The experimental results were discussed in terms of yielding and ultimate strengths, slip stiffness, and ductility factors. The ductility classification and failure mechanisms of each group of specimens were analyzed. It was demonstrated that the STS joint… More >

  • Open AccessOpen Access

    ARTICLE

    Dynamic Testing of Elastic Modulus, Shear Modulus, and Poisson’s Ratio of Bamboo Scrimber

    Xiaoyu Gu1, Linbi Chen2, Seithati Mapesela3, Zheng Wang1,*, Aijin Zhou4
    Journal of Renewable Materials, Vol.11, No.12, pp. 4197-4210, 2023, DOI:10.32604/jrm.2023.028768
    (This article belongs to the Special Issue: Bio-Composite Materials and Structures-2023)
    Abstract The bamboo scrimber is an anisotropic material. The elastic constant values of the bamboo scrimber specimens measured by the dynamic and static methods are consistent, and the dynamic test method has the advantages of rapidity, simplicity, good repeatability, and high precision. Bamboo scrimber has strong potential as a building material, and its elastic constant is an important index to measure its mechanical properties. To quickly, simply, non-destructively, and accurately detect the elastic constant of the bamboo scrimber, they were dynamically tested by the free plate transient excitation method and cantilever plate torsional vibration method. The static four-point bending method was… More >

Per Page:

Share Link