Home / Journals / JRM / Vol.5, No.1, 2017
Special lssues
Table of Content
  • Open AccessOpen Access

    ARTICLE

    Renewable Additives that Improve Water Resistance of Cellulose Composite Materials

    Heather L. Buckley1*, Caitlin H. Touchberry2, Jonathan P. McKinley2, Zachary S. Mathe1, Hurik Muradyan1, Hannah Ling2, Raj P. Fadadu1, Martin J. Mulvihill1, Susan E. Amrose2
    Journal of Renewable Materials, Vol.5, No.1, pp. 1-13, 2017, DOI:10.7569/JRM.2016.634109
    Abstract Waste cardboard is an underutilized resource that can be redirected for the creation of safer and higher quality building materials for low-income housing in the developing world, as well as to produce better materials for indoor environments in developed-world contexts. Using a renewable biobased binder and benign additives, we have improved the water resistance of a cardboard-based composite material, overcoming one of the major barriers to scaling and adoption of this class of materials. Resistance to water uptake was significantly increased with several additives and was increased over 900-fold in the best case. Strength and water uptake over time are… More >

  • Open AccessOpen Access

    ARTICLE

    Effects of Cold Plasma on Surface, Thermal and Antimicrobial Release Properties of Chitosan Film

    S.K. Pankaj1, C. Bueno-Ferrer1, N.N. Misra1, L. O’Neill2, Paula Bourke1, P.J. Cullen3*
    Journal of Renewable Materials, Vol.5, No.1, pp. 14-20, 2017, DOI:10.7569/JRM.2016.634105
    Abstract This work aims to analyze the effects of cold atmospheric air plasma treatment of antimicrobial chitosan film with different levels of thymol. Optical characterization of the dielectric barrier discharge showed the generation of reactive nitrogen and oxygen species by the system. A significant increase (p < 0.05) in the surface roughness was observed after cold plasma treatment of the films. No significant difference (p > 0.05) was observed in the thermal profile of the plasma-treated films. A significant increase (p < 0.05) in the thymol diffusion coefficient was observed after the plasma treatment for all the active films. More >

  • Open AccessOpen Access

    ARTICLE

    Isocyanate-Free Polyurethanes by Coreaction of Condensed Tannins with Aminated Tannins

    M. Thébault1,2, A. Pizzi13*, F.J. Santiago-Medina1, F.M. Al-Marzouki3, S. Abdalla3
    Journal of Renewable Materials, Vol.5, No.1, pp. 21-29, 2017, DOI:10.7569/JRM.2016.634116
    Abstract Isocyanate-free polyurethane resins biosourced to a very high percentage level were prepared by the reaction of aminated mimosa tannin extract with commercial mimosa tannin extract prereacted with dimethyl carbonate. The reaction took place with ease at ambient temperature. Indications were that the polyurethanes obtained formed a hard film when cured at a temperature higher than 100 °C. Furthermore, the carbohydrate fraction of the tannin extract also appeared to be carbonated and reacted to generate isocyanate-free polyurethane linkages with the aminated tannins. This indicated that not only the polyphenolic fraction of the tannin extract, but also its other major component, can… More >

  • Open AccessOpen Access

    ARTICLE

    Chitin Preparation by Demineralizing Deproteinized Lobster Shells with CO2 and a Cationite

    Miguel Ángel Ramírez1, Patricia González2, Juan Reinerio Fagundo2, Margaret Suarez3, Clara Melian3, Tania Rodríguez1, Carlos Peniche4*
    Journal of Renewable Materials, Vol.5, No.1, pp. 30-37, 2017, DOI:10.7569/JRM.2016.634121
    Abstract The inorganic components of crustacean shells are usually removed using HCl solutions. This provokes undesirable modifications in the extracted chitin. In the present procedure, deproteinized lobster shells were demineralized with CO2 and a cationic resin (cationite). The resulting chitin (CHI-CO2) is compared in terms of degree of acetylation (DA), crystallinity index (CrI) and thermal stability with chitins obtained by demineralization procedures with HCl (CHI-HCl) and ethylenediaminetetraacetic acid (CHI-EDTA). The ash content of chitins demineralized with CO2 was similar to that of chitins prepared using HCl or EDTA. However, the resultant DA and CrI of CHI-HCl and CHI-EDTA were lower than… More >

  • Open AccessOpen Access

    ARTICLE

    Improvement of Natural Fiber Composite Materials by Carbon Fibers

    Meriem Fehri1,2, Rachid Robleh Ragueh1, Alexandre Vivet1*, Fakhreddine Dammak2, Mohamed Haddar2
    Journal of Renewable Materials, Vol.5, No.1, pp. 38-47, 2017, DOI:10.7569/JRM.2016.634123
    Abstract The purpose of this work is the improvement of flax fiber-reinforced composites obtained by vacuum molding in order to encourage their insertion into industrial products. The relatively high degree of porosity in these kinds of composites, due to the lack of compatibility between epoxy matrix and flax fibers and the hydrophilicity of flax fiber, remains a major constraint to their use in the industrial world. Hence, we have used a combination of carbon fibers with those of flax in order to optimize the properties of the assembly. Several stacking sequences have been tested in order to analyze the influence of… More >

  • Open AccessOpen Access

    ARTICLE

    New Closed- and Open-Cell, Aldehyde-Free Protein Foams

    María Cecilia Basso1*, Antonio Pizzi1,2
    Journal of Renewable Materials, Vol.5, No.1, pp. 48-53, 2017, DOI:10.7569/JRM.2016.634124
    Abstract New aldehyde-free and isocyanate-free biofoams have been obtained by reacting albumin chicken egg white and dimethyl carbonate (DMC). The optimized formulations yielded lightweight foams whose densities were evaluated as 0.016–0.16 g/cm3. Mechanical resistance was 0.023–0.34 MPa and residual pH nearly neutral. The new foams presented up to 57% of closed cells as measured by helium pycnometry and good thermal insulation. These new natural foams are environmentally friendly materials and show very promising properties. More >

  • Open AccessOpen Access

    ARTICLE

    A Novel Plant-Based Biosorbent for Removal of Copper (II) from Aqueous Solutions: Biosorption of Copper (II) by Dried Plant Biomass

    Abha Dubey1*, Anuradha Mishra2
    Journal of Renewable Materials, Vol.5, No.1, pp. 54-61, 2017, DOI:10.7569/JRM.2016.634127
    Abstract Biosorption effectively removes heavy metal ions by using inexpensive biosorbents. In this study, Portulaca oleracea plant waste biomass was used as environmentally friendly biosorbent for the removal of copper ions from aqueous solution. This article includes the study of the effects of various important parameters on the biosorption process. Maximum biosorption was found to occur under slightly acidic conditions (pH 6). Small particle size, moderate agitation speed, and moderate temperature favor the biosorption process. The Langmuir model was most suitable, showing the biosorption capacity to be 85.470 mg/g. Pseudo-secondorder model best described the kinetics of the biosorption process. Thermodynamic studies… More >

  • Open AccessOpen Access

    ARTICLE

    Renewable Polymers: Synthesis and Characterization of Poly(4-ketopimelic acid-glycerol)

    Ananda S. Amarasekara*, Muhammad A. Hasan, Eve Larkin
    Journal of Renewable Materials, Vol.5, No.1, pp. 62-66, 2017, DOI:10.7569/JRM.2016.634129
    Abstract Condensation polymerization of renewable resources-based monomers, 4-ketopimelic acid and glycerol, were studied using two different catalysts; p-toluenesulfonic acid and Sb2O3. The highest polymer yield of 96% was achieved by using a 3:4 mole ratio mixture of 4-ketopimelic acid and glycerol, with Sb2O3 (0.5 mol% relative to 4-ketopimelic acid) as catalyst and heating at 23–210 °C, under N2 for 1 h; then 210 °C, vacuum, 12 h. The poly(4-ketopimelic acid-glycerol) formed is insoluble in all common organic solvents and is shown to contain a branched polymeric structure with ketal and ester links by using FT-IR, 1H and 13C NMR spectroscopy. More >

  • Open AccessOpen Access

    ARTICLE

    Polyol Preparation by Liquefaction of Technical Lignins in Crude Glycerol

    Louis C. Muller1*, Sanette Marx1, Hermanus C.M. Vosloo2
    Journal of Renewable Materials, Vol.5, No.1, pp. 67-80, 2017, DOI:10.7569/JRM.2016.634130
    Abstract This work reports a study of polyol synthesis through liquefaction of technical lignins in crude glycerol by means of 1H and 31P NMR spectroscopy. The polyols are intended for preparation of polyurethane foam; thus, it is important to know how different lignin types as well as crude glycerol influence and contribute to the final polyol hydroxyl contents. Polyols prepared from organosolv lignin, kraft lignin and lignosulphonate had hydroxyl numbers suitable for rigid foam of 435, 515 and 529 mgKOH/g, respectively. The polyols differed in composition with glycerol, showing significant variation. During liquefaction the glycerol content was mostly reduced through bonding… More >

Per Page:

Share Link