
This journal publishes original research papers of reasonable permanent intellectual value, in the areas of computer modeling in engineering & Sciences, including, but not limited to computational mechanics, computational materials, computational mathematics, computational physics, computational chemistry, and computational biology, pertinent to solids, fluids, gases, biomaterials, and other continua spanning from various spatial length scales (quantum, nano, micro, meso, and macro), and various time scales (picoseconds to hours) are of interest. Papers which deal with multi-physics problems, as well as those which deal with the interfaces of mechanics, chemistry, and biology, are particularly encouraged. Novel computational approaches and state-of-the-art computation algorithms, such as soft computing, artificial intelligence-based machine learning methods, and computational statistical methods are welcome.
Science Citation Index (Web of Science): 2024 Impact Factor 2.5; Current Contents: Engineering, Computing & Technology; Scopus Citescore (Impact per Publication 2024): 4.4; SNIP (Source Normalized Impact per Paper 2024): 0.693; RG Journal Impact (average over last three years); Engineering Index (Compendex); Applied Mechanics Reviews; Cambridge Scientific Abstracts: Aerospace and High Technology, Materials Sciences & Engineering, and Computer & Information Systems Abstracts Database; CompuMath Citation Index; INSPEC Databases; Mathematical Reviews; MathSci Net; Mechanics; Science Alert; Science Navigator; Zentralblatt fur Mathematik; Portico, etc...
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1237-1252, 2025, DOI:10.32604/cmes.2025.073530 - 26 November 2025
(This article belongs to the Special Issue: Machine Learning and Deep Learning-Based Pattern Recognition)
Abstract Side-scan sonar (SSS) is essential for acquiring high-resolution seafloor images over large areas, facilitating the identification of subsea objects. However, military security restrictions and the scarcity of subsea targets limit the availability of SSS data, posing challenges for Automatic Target Recognition (ATR) research. This paper presents an approach that uses Cycle-Consistent Generative Adversarial Networks (CycleGAN) to augment SSS images of key subsea objects, such as shipwrecks, aircraft, and drowning victims. The process begins by constructing 3D models to generate rendered images with realistic shadows from multiple angles. To enhance image quality, a shadow extractor and More >
Open Access
EDITORIAL
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1253-1257, 2025, DOI:10.32604/cmes.2025.074581 - 26 November 2025
(This article belongs to the Special Issue: Emerging Technologies in Information Security )
Abstract This article has no abstract. More >
Open Access
REVIEW
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1259-1301, 2025, DOI:10.32604/cmes.2025.070528 - 26 November 2025
(This article belongs to the Special Issue: Innovative Computational Models for Smart Cities)
Abstract The growing energy demand of buildings, driven by rapid urbanization, poses significant challenges for sustainable urban development. As buildings account for over 40% of global energy consumption, innovative solutions are needed to improve efficiency, resilience, and environmental performance. This paper reviews the integration of Digital Twin (DT) technologies and Machine Learning (ML) for optimizing energy management in smart buildings connected to smart grids. A key enabler of this integration is the Internet of Things (IoT), which provides the sensor networks and real-time data streams that fee/d DT–ML frameworks, enabling accurate monitoring, forecasting, and adaptive control.… More >
Open Access
REVIEW
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1303-1347, 2025, DOI:10.32604/cmes.2025.071302 - 26 November 2025
Abstract Optimal sizing and allocation of distributed generators (DGs) have become essential computational challenges in improving the performance, efficiency, and reliability of electrical distribution networks. Despite extensive research, existing approaches often face algorithmic limitations such as slow convergence, premature stagnation in local minima, or suboptimal accuracy in determining optimal DG placement and capacity. This study presents a comprehensive scientometric and systematic review of global research focused on computer-based modelling and algorithmic optimization for renewable DG sizing and placement. It integrates both quantitative and qualitative analyses of the scholarly landscape, mapping influential research domains, co-authorship structures, the More >
Open Access
REVIEW
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1349-1388, 2025, DOI:10.32604/cmes.2025.069507 - 26 November 2025
(This article belongs to the Special Issue: Advanced Artificial Intelligence and Machine Learning Methods Applied to Energy Systems)
Abstract Distribution systems face significant challenges in maintaining power quality issues and maximizing renewable energy hosting capacity due to the increased level of photovoltaic (PV) systems integration associated with varying loading and climate conditions. This paper provides a comprehensive overview on the exit strategies to enhance distribution system operation, with a focus on harmonic mitigation, voltage regulation, power factor correction, and optimization techniques. The impact of passive and active filters, custom power devices such as dynamic voltage restorers (DVRs) and static synchronous compensators (STATCOMs), and grid modernization technologies on power quality is examined. Additionally, this paper… More >
Open Access
REVIEW
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1389-1485, 2025, DOI:10.32604/cmes.2025.071858 - 26 November 2025
Abstract Human Activity Recognition (HAR) represents a rapidly advancing research domain, propelled by continuous developments in sensor technologies and the Internet of Things (IoT). Deep learning has become the dominant paradigm in sensor-based HAR systems, offering significant advantages over traditional machine learning methods by eliminating manual feature extraction, enhancing recognition accuracy for complex activities, and enabling the exploitation of unlabeled data through generative models. This paper provides a comprehensive review of recent advancements and emerging trends in deep learning models developed for sensor-based human activity recognition (HAR) systems. We begin with an overview of fundamental HAR… More >
Graphic Abstract
Open Access
REVIEW
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1487-1573, 2025, DOI:10.32604/cmes.2025.070964 - 26 November 2025
(This article belongs to the Special Issue: Artificial Intelligence Models in Healthcare: Challenges, Methods, and Applications)
Abstract Medical image analysis has become a cornerstone of modern healthcare, driven by the exponential growth of data from imaging modalities such as MRI, CT, PET, ultrasound, and X-ray. Traditional machine learning methods have made early contributions; however, recent advancements in deep learning (DL) have revolutionized the field, offering state-of-the-art performance in image classification, segmentation, detection, fusion, registration, and enhancement. This comprehensive review presents an in-depth analysis of deep learning methodologies applied across medical image analysis tasks, highlighting both foundational models and recent innovations. The article begins by introducing conventional techniques and their limitations, setting the… More >
Open Access
REVIEW
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1575-1664, 2025, DOI:10.32604/cmes.2025.073200 - 26 November 2025
(This article belongs to the Special Issue: Artificial Intelligence for 6G Wireless Networks)
Abstract The envisioned 6G wireless networks demand advanced Multiple Access (MA) schemes capable of supporting ultra-low latency, massive connectivity, high spectral efficiency, and energy efficiency (EE), especially as the current 5G networks have not achieved the promised 5G goals, including the projected 2000 times EE improvement over the legacy 4G Long Term Evolution (LTE) networks. This paper provides a comprehensive survey of Artificial Intelligence (AI)-enabled MA techniques, emphasizing their roles in Spectrum Sensing (SS), Dynamic Resource Allocation (DRA), user scheduling, interference mitigation, and protocol adaptation. In particular, we systematically analyze the progression of traditional and modern… More >
Graphic Abstract
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1665-1688, 2025, DOI:10.32604/cmes.2025.072447 - 26 November 2025
Abstract Recent progress in topology optimization (TO) has seen a growing integration of machine learning to accelerate computation. Among these, online learning stands out as a promising strategy for large-scale TO tasks, as it eliminates the need for pre-collected training datasets by updating surrogate models dynamically using intermediate optimization data. Stress-constrained lightweight design is an important class of problem with broad engineering relevance. Most existing frameworks use pixel or voxel-based representations and employ the finite element method (FEM) for analysis. The limited continuity across finite elements often compromises the accuracy of stress evaluation. To overcome this… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1689-1710, 2025, DOI:10.32604/cmes.2025.071256 - 26 November 2025
(This article belongs to the Special Issue: Topology Optimization: Theory, Methods, and Engineering Applications)
Abstract The level set method (LSM) is renowned for producing smooth boundaries and clear geometric representations, facilitating integration with CAD environments. However, its inability to autonomously generate new holes during optimization makes the results highly dependent on the initial design. Although topological derivatives are often introduced to enable hole nucleation, their conversion into effective shape derivatives remains challenging, limiting topological evolution. To address this, a level set topology optimization method with autonomous hole formation (LSM-AHF) is proposed, integrating the material removal mechanism of the SIMP (Solid Isotropic Material with Penalization) method into the LSM framework. First,… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1711-1734, 2025, DOI:10.32604/cmes.2025.071187 - 26 November 2025
Abstract This research utilizes analytical solutions to investigate the issue of nonlinear static bending in nanobeams affected by the flexomagnetic effect. The nanobeams are exposed to mechanical loads and put in a temperature environment. The equilibrium equation of the beam is formulated based on the newly developed higher-order shear deformation theory. The flexomagnetic effect is explained by the presence of the strain gradient component, which also takes into consideration the impact of small-size effects. This study has used a flexible transformation to derive the equilibrium equation for a single variable, which significantly simplifies the process of More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1735-1753, 2025, DOI:10.32604/cmes.2025.072256 - 26 November 2025
(This article belongs to the Special Issue: Advances in Computational Fracture Mechanics: Theories, Techniques, and Applications)
Abstract Ensuring the structural integrity of piping systems is crucial in industrial operations to prevent catastrophic failures and minimize shutdown time. This study investigates a transportation-damaged pipe exposed to high-temperature conditions and cyclic loading, representing a realistic challenge in plant operation. The objective was to evaluate the service life and integrity assessment parameters of the damaged pipe, subjected to 22,000 operational cycles under two daily charge and discharge conditions. The flaw size in the damaged pipe was determined based on a failure assessment procedure, ensuring a conservative and reliable input. The damage was characterized as a… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1755-1787, 2025, DOI:10.32604/cmes.2025.072200 - 26 November 2025
(This article belongs to the Special Issue: AI and Optimization in Material and Structural Engineering: Emerging Trends and Applications)
Abstract The increasing demand for sustainable construction practices has led to growing interest in recycled aggregate concrete (RAC) as an eco-friendly alternative to conventional concrete. However, predicting its compressive strength remains a challenge due to the variability in recycled materials and mix design parameters. This study presents a robust machine learning framework for predicting the compressive strength of recycled aggregate concrete using feedforward neural networks (FFNN), Random Forest (RF), and XGBoost. A literature-derived dataset of 502 samples was enriched via interpolation-based data augmentation and modeled using five distinct optimization techniques within MATLAB’s Neural Net Fitting module:… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1789-1819, 2025, DOI:10.32604/cmes.2025.073088 - 26 November 2025
(This article belongs to the Special Issue: Frontiers in Computational Modeling and Simulation of Concrete)
Abstract The rapid advancement of three-dimensional printed concrete (3DPC) requires intelligent and interpretable frameworks to optimize mixture design for strength, printability, and sustainability. While machine learning (ML) models have improved predictive accuracy, their limited transparency has hindered their widespread adoption in materials engineering. To overcome this barrier, this study introduces a Random Forests ensemble learning model integrated with SHapley Additive exPlanations (SHAP) and Partial Dependence Plots (PDPs) to model and explain the compressive strength behavior of 3DPC mixtures. Unlike conventional “black-box” models, SHAP quantifies each variable’s contribution to predictions based on cooperative game theory, which enables… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1821-1837, 2025, DOI:10.32604/cmes.2025.071131 - 26 November 2025
Abstract This research establishes a methodological framework for generating geometrically accurate 3D representations of human crystalline lenses through scanning technologies and digital reconstruction. Multiple scanning systems were evaluated to identify optimal approaches for point cloud processing and subsequent development of parameterized solid models, facilitating comprehensive morpho-geometric characterization. Experimental work was performed at the 3D Scanning Laboratory of SEDIC (Industrial Design and Scientific Calculation Service) at the Technical University of Cartagena, employing five distinct scanner types based on structured light, laser, and infrared technologies. Test specimens—including preliminary calibration using a lentil and biological analysis of a human… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1839-1861, 2025, DOI:10.32604/cmes.2025.071678 - 26 November 2025
(This article belongs to the Special Issue: Computational Methods in Mono/hybrid nanofluids: Innovative Applications and Future Trends)
Abstract Current developments in magnetohydrodynamic (MHD) convection and nanofluid engineering technology have have greatly enhanced heat transfer performance in process systems, particularly through the use of carbon nanotube (CNT)–based fluids that offer exceptional thermal conductivity. Despite extensive research on MHD natural convection in enclosures, the combined effects of complex obstacle geometries, magnetic fields, and CNT nanofluids in three-dimensional configurations remain insufficiently explored. This research investigates MHD natural convection of carbon nanotube (CNT)-water nanofluid within a three-dimensional cavity. The study considers an inclined cross-shaped hot obstacle, a configuration not extensively explored in previous works. The work aims… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1863-1901, 2025, DOI:10.32604/cmes.2025.070389 - 26 November 2025
Abstract Differentiating between regular and abnormal noises in machine-generated sounds is a crucial but difficult problem. For accurate audio signal classification, suitable and efficient techniques are needed, particularly machine learning approaches for automated classification. Due to the dynamic and diverse representative characteristics of audio data, the probability of achieving high classification accuracy is relatively low and requires further research efforts. This study proposes an ensemble model based on the LeNet and hierarchical attention mechanism (HAM) models with MFCC features to enhance the models’ capacity to handle bias. Additionally, CNNs, bidirectional LSTM (BiLSTM), CRNN, LSTM, capsule network More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1903-1940, 2025, DOI:10.32604/cmes.2025.072973 - 26 November 2025
(This article belongs to the Special Issue: Computational Modeling, Simulation, and Algorithmic Methods for Dynamical Systems)
Abstract This paper proposes a model-based control framework for vehicle platooning systems with second-order nonlinear dynamics operating over switching signed networks, time-varying delays, and deception attacks. The study includes two configurations: a leaderless structure using Finite-Time Non-Singular Terminal Bipartite Consensus (FNTBC) and Fixed-Time Bipartite Consensus (FXTBC), and a leader—follower structure ensuring structural balance and robustness against deceptive signals. In the leaderless model, a bipartite controller based on impulsive control theory, gauge transformation, and Markovian switching Lyapunov functions ensures mean-square stability and coordination under deception attacks and communication delays. The FNTBC achieves finite-time convergence depending on initial More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1941-1967, 2025, DOI:10.32604/cmes.2025.072455 - 26 November 2025
Abstract Accurately determining when and what to remanufacture is essential for maximizing the lifecycle value of industrial equipment. However, existing approaches face three significant limitations: (1) reliance on predefined mathematical models that often fail to capture equipment-specific degradation, (2) offline optimization methods that assume access to future data, and (3) the absence of component-level guidance. To address these challenges, we propose a data-driven framework for component-level decision-making. The framework leverages streaming sensor data to predict the remaining useful life (RUL) without relying on mathematical models, employs an online optimization algorithm suitable for practical settings, and, through More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1969-1992, 2025, DOI:10.32604/cmes.2025.072024 - 26 November 2025
(This article belongs to the Special Issue: Advanced Artificial Intelligence and Machine Learning Methods Applied to Energy Systems)
Abstract Recent advancements in smart-meter technology are transforming traditional power systems into intelligent smart grids. It offers substantial benefits across social, environmental, and economic dimensions. To effectively realize these advantages, a fine-grained collection and analysis of smart meter data is essential. However, the high dimensionality and volume of such time-series present significant challenges, including increased computational load, data transmission overhead, latency, and complexity in real-time analysis. This study proposes a novel, computationally efficient framework for feature extraction and selection tailored to smart meter time-series data. The approach begins with an extensive offline analysis, where features are… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1993-2015, 2025, DOI:10.32604/cmes.2025.067121 - 26 November 2025
(This article belongs to the Special Issue: Advanced Artificial Intelligence and Machine Learning Methods Applied to Energy Systems)
Abstract Transmission line faults pose a significant threat to power system resilience, underscoring the need for accurate and rapid fault identification to facilitate proper resource monitoring, economic loss prevention, and blackout avoidance. Extreme learning machine (ELM) offers a compelling solution for rapid classification, achieving network training in a single epoch. Leveraging the Internet of Things (IoT) and the virtual instrumentation capabilities of LabVIEW, ELM can enable the swift and precise identification of transmission line faults. This paper presents a regularized radial basis function (RBF) ELM-based fault detection and classification system for transmission lines, utilizing a LabVIEW More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2017-2038, 2025, DOI:10.32604/cmes.2025.071958 - 26 November 2025
(This article belongs to the Special Issue: Scientific Computing and Its Application to Engineering Problems)
Abstract This study investigates the performance of dual curved-leg pontoon floating breakwaters in finite water depth under the assumption of linear wave theory. The analysis is carried out for four different models of curved-leg geometries, which are combinations of convex and concave shapes. The models are classified as follows. Model-1: Seaside and leeside face concave, Model-2: Seaside and leeside face convex, Model-3: Seaside face convex and leeside face concave, and Model-4: Seaside face concave and leeside face convex. The Boundary Element Method is utilized in order to find a solution to the associated boundary value problem.… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2039-2055, 2025, DOI:10.32604/cmes.2025.072572 - 26 November 2025
(This article belongs to the Special Issue: Incomplete Data Test, Analysis and Fusion Under Complex Environments)
Abstract In modern complex systems, real-time regression prediction plays a vital role in performance evaluation and risk warning. Nevertheless, existing methods still face challenges in maintaining stability and predictive accuracy under complex conditions. To address these limitations, this study proposes an online prediction approach that integrates event tracking sensitivity analysis with machine learning. Specifically, a real-time event tracking sensitivity analysis method is employed to capture and quantify the impact of key events on system outputs. On this basis, a mutual-information–based self-extraction mechanism is introduced to construct prior weights, which are then incorporated into a LightGBM prediction More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2057-2129, 2025, DOI:10.32604/cmes.2025.071629 - 26 November 2025
(This article belongs to the Special Issue: Recent Developments on Computational Biology-II)
Abstract Chikungunya is a mosquito-borne viral infection caused by the chikungunya virus (CHIKV). It is characterized by acute onset of high fever, severe polyarthralgia, myalgia, headache, and maculopapular rash. The virus is rapidly spreading and may establish in new regions where competent mosquito vectors are present. This research analyzes the regulatory dynamics of a stochastic differential equation (SDE) model describing the transmission of the CHIKV, incorporating seasonal variations, immunization efforts, and environmental fluctuations modeled through Poisson random measure noise under demographic heterogeneity. The model guarantees the existence of a global positive solution and demonstrates periodic dynamics… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2131-2156, 2025, DOI:10.32604/cmes.2025.072938 - 26 November 2025
(This article belongs to the Special Issue: Analytical and Numerical Solution of the Fractional Differential Equation)
Abstract Fractional differential equations (FDEs) provide a powerful tool for modeling systems with memory and non-local effects, but understanding their underlying structure remains a significant challenge. While numerous numerical and semi-analytical methods exist to find solutions, new approaches are needed to analyze the intrinsic properties of the FDEs themselves. This paper introduces a novel computational framework for the structural analysis of FDEs involving iterated Caputo derivatives. The methodology is based on a transformation that recasts the original FDE into an equivalent higher-order form, represented as the sum of a closed-form, integer-order component G(y) and a residual… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2157-2188, 2025, DOI:10.32604/cmes.2025.072352 - 26 November 2025
(This article belongs to the Special Issue: Algorithms, Models, and Applications of Fuzzy Optimization and Decision Making)
Abstract Uncertainty and ambiguity are pervasive in real-world intelligent systems, necessitating advanced mathematical frameworks for effective modeling and analysis. Fermatean fuzzy sets (FFSs), as a recent extension of classical fuzzy theory, provide enhanced flexibility for representing complex uncertainty. In this paper, we propose a unified parametric divergence operator for FFSs, which comprehensively captures the interplay among membership, non-membership, and hesitation degrees. The proposed operator is rigorously analyzed with respect to key mathematical properties, including non-negativity, non-degeneracy, and symmetry. Notably, several well-known divergence operators, such as Jensen-Shannon divergence, Hellinger distance, and χ2-divergence, are shown to be special cases More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2189-2222, 2025, DOI:10.32604/cmes.2025.070298 - 26 November 2025
(This article belongs to the Special Issue: Innovative Applications of Fractional Modeling and AI for Real-World Problems)
Abstract Breast cancer’s heterogeneous progression demands innovative tools for accurate prediction. We present a hybrid framework that integrates machine learning (ML) and fractional-order dynamics to predict tumor growth across diagnostic and temporal scales. On the Wisconsin Diagnostic Breast Cancer dataset, seven ML algorithms were evaluated, with deep neural networks (DNNs) achieving the highest accuracy (97.72%). Key morphological features (area, radius, texture, and concavity) were identified as top malignancy predictors, aligning with clinical intuition. Beyond static classification, we developed a fractional-order dynamical model using Caputo derivatives to capture memory-driven tumor progression. The model revealed clinically interpretable patterns: More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2223-2252, 2025, DOI:10.32604/cmes.2025.072136 - 26 November 2025
Abstract Recent Super-Resolution (SR) algorithms often suffer from excessive model complexity, high computational costs, and limited flexibility across varying image scales. To address these challenges, we propose DDNet, a dynamic and lightweight SR framework designed for arbitrary scaling factors. DDNet integrates a residual learning structure with an Adaptively fusion Feature Block (AFB) and a scale-aware upsampling module, effectively reducing parameter overhead while preserving reconstruction quality. Additionally, we introduce DDNetGAN, an enhanced variant that leverages a relativistic Generative Adversarial Network (GAN) to further improve texture realism. To validate the proposed models, we conduct extensive training using the More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2253-2276, 2025, DOI:10.32604/cmes.2025.072031 - 26 November 2025
(This article belongs to the Special Issue: Recent Advances in Signal Processing and Computer Vision)
Abstract Accurate calibration of surgical instruments and ultrasound probes is essential for achieving high precision in image guided minimally invasive procedures. However, existing methods typically treat the calibration of the needle tip and the ultrasound probe as two independent processes, lacking an integrated calibration mechanism, which often leads to cumulative errors and reduced spatial consistency. To address this challenge, we propose a joint calibration model that unifies the calibration of the surgical needle tip and the ultrasound probe within a single coordinate system. The method formulates the calibration process through a series of mathematical models and… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2277-2309, 2025, DOI:10.32604/cmes.2025.070726 - 26 November 2025
(This article belongs to the Special Issue: Machine Learning and Deep Learning-Based Pattern Recognition)
Abstract Traffic congestion plays a significant role in intelligent transportation systems (ITS) due to rapid urbanization and increased vehicle concentration. The congestion is dependent on multiple factors, such as limited road occupancy and vehicle density. Therefore, the transportation system requires an effective prediction model to reduce congestion issues in a dynamic environment. Conventional prediction systems face difficulties in identifying highly congested areas, which leads to reduced prediction accuracy. The problem is addressed by integrating Graph Neural Networks (GNN) with the Lion Swarm Optimization (LSO) framework to tackle the congestion prediction problem. Initially, the traffic information is… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2311-2337, 2025, DOI:10.32604/cmes.2025.069697 - 26 November 2025
(This article belongs to the Special Issue: Machine Learning and Deep Learning-Based Pattern Recognition)
Abstract Advancements in radiation-based imaging and computational intelligence have significantly improved medical diagnostics, particularly in dermatology. This study presents an ensemble-based skin lesion classification framework that integrates deep neural networks (DNNs) with transfer learning, a customized DNN, and an optimized self-learning binary differential evolution (SLBDE) algorithm for feature selection and fusion. Leveraging computational techniques alongside medical imaging modalities, the proposed framework extracts and fuses discriminative features from multiple pre-trained models to improve classification robustness. The methodology is evaluated on benchmark datasets, including ISIC 2017 and the Argentina Skin Lesion dataset, demonstrating superior accuracy, precision, and F1-score… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2339-2355, 2025, DOI:10.32604/cmes.2025.071512 - 26 November 2025
(This article belongs to the Special Issue: Machine Learning and Deep Learning-Based Pattern Recognition)
Abstract Atrial Fibrillation (AF) is a cardiac disorder characterized by irregular heart rhythms, typically diagnosed using Electrocardiogram (ECG) signals. In remote regions with limited healthcare personnel, automated AF detection is extremely important. Although recent studies have explored various machine learning and deep learning approaches, challenges such as signal noise and subtle variations between AF and other cardiac rhythms continue to hinder accurate classification. In this study, we propose a novel framework that integrates robust preprocessing, comprehensive feature extraction, and an ensemble classification strategy. In the first step, ECG signals are divided into equal-sized segments using a… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2357-2381, 2025, DOI:10.32604/cmes.2025.073640 - 26 November 2025
(This article belongs to the Special Issue: Advances in AI-Driven Computational Modeling for Image Processing)
Abstract Rain streaks introduced by atmospheric precipitation significantly degrade image quality and impair the reliability of high-level vision tasks. We present a novel image deraining framework built on a three-stage dual-residual architecture that progressively restores rain-degraded content while preserving fine structural details. Each stage begins with a multi-scale feature extractor and a channel attention module that adaptively emphasizes informative representations for rain removal. The core restoration is achieved via enhanced dual-residual blocks, which stabilize training and mitigate feature degradation across layers. To further refine representations, we integrate cross-dimensional spatial attention supervised by ground-truth guidance, ensuring that More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2383-2399, 2025, DOI:10.32604/cmes.2025.072259 - 26 November 2025
Abstract Cardiovascular diseases (CVD) remain a leading cause of mortality worldwide, highlighting the need for precise risk assessment tools to support clinical decision-making. This study introduces a meta-learning model for predicting mortality risk in patients with CVD, classifying them into high-risk and low-risk groups. Data were collected from 868 patients at Tabriz Heart Hospital (THH) in Iran, along with two open-access datasets—the Cleveland Heart Disease (CHD) and Faisalabad Institute of Cardiology (FIC) datasets. Data preprocessing involved class balancing via the Synthetic Minority Over-Sampling Technique (SMOTE). Each dataset was then split into training and test sets, and… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2401-2434, 2025, DOI:10.32604/cmes.2025.072148 - 26 November 2025
Abstract Detecting Alzheimer’s disease is essential for patient care, as an accurate diagnosis influences treatment options. Classifying dementia from non-dementia in brain MRIs is challenging due to features such as hippocampal atrophy, while manual diagnosis is susceptible to error. Optimal computer-aided diagnosis (CAD) systems are essential for improving accuracy and reducing misclassification risks. This study proposes an optimized ensemble method (CEOE-Net) that initiates with the selection of pre-trained models, including DenseNet121, ResNet50V2, and ResNet152V2 for unique feature extraction. Each selected model is enhanced with the inclusion of a channel attention (CA) block to improve the feature… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2435-2456, 2025, DOI:10.32604/cmes.2025.070419 - 26 November 2025
(This article belongs to the Special Issue: Intelligent Medical Decision Support Systems: Methods and Applications)
Abstract Blood cell disorders are among the leading causes of serious diseases such as leukemia, anemia, blood clotting disorders, and immune-related conditions. The global incidence of hematological diseases is increasing, affecting both children and adults. In clinical practice, blood smear analysis is still largely performed manually, relying heavily on the experience and expertise of laboratory technicians or hematologists. This manual process introduces risks of diagnostic errors, especially in cases with rare or morphologically ambiguous cells. The situation is more critical in developing countries, where there is a shortage of specialized medical personnel and limited access to… More >
Graphic Abstract
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2457-2479, 2025, DOI:10.32604/cmes.2025.072765 - 26 November 2025
(This article belongs to the Special Issue: Exploring the Impact of Artificial Intelligence on Healthcare: Insights into Data Management, Integration, and Ethical Considerations)
Abstract Brain tumors pose significant diagnostic challenges due to their diverse types and complex anatomical locations. Due to the increase in precision image-based diagnostic tools, driven by advancements in artificial intelligence (AI) and deep learning, there has been potential to improve diagnostic accuracy, especially with Magnetic Resonance Imaging (MRI). However, traditional state-of-the-art models lack the sensitivity essential for reliable tumor identification and segmentation. Thus, our research aims to enhance brain tumor diagnosis in MRI by proposing an advanced model. The proposed model incorporates dilated convolutions to optimize the brain tumor segmentation and classification. The proposed model… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2481-2501, 2025, DOI:10.32604/cmes.2025.072575 - 26 November 2025
(This article belongs to the Special Issue: Artificial Intelligence Models in Healthcare: Challenges, Methods, and Applications)
Abstract Diagnosing gastrointestinal tract diseases is a critical task requiring accurate and efficient methodologies. While deep learning models have significantly advanced medical image analysis, challenges such as imbalanced datasets and redundant features persist. This study proposes a novel framework that customizes two deep learning models, NasNetMobile and ResNet50, by incorporating bottleneck architectures, named as NasNeck and ResNeck, to enhance feature extraction. The feature vectors are fused into a combined vector, which is further optimized using an improved Whale Optimization Algorithm to minimize redundancy and improve discriminative power. The optimized feature vector is then classified using artificial… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2503-2533, 2025, DOI:10.32604/cmes.2025.071571 - 26 November 2025
(This article belongs to the Special Issue: Artificial Intelligence Models in Healthcare: Challenges, Methods, and Applications)
Abstract Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide, necessitating efficient diagnostic tools. This study develops and validates a deep learning framework for phonocardiogram (PCG) classification, focusing on model generalizability and robustness. Initially, a ResNet-18 model was trained on the PhysioNet 2016 dataset, achieving high accuracy. To assess real-world viability, we conducted extensive external validation on the HLS-CMDS dataset. We performed four key experiments: (1) Fine-tuning the PhysioNet-trained model for binary (Normal/Abnormal) classification on HLS-CMDS, achieving 88% accuracy. (2) Fine-tuning the same model for multi-class classification (Normal, Murmur, Extra Sound, Rhythm Disorder), which yielded… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2535-2550, 2025, DOI:10.32604/cmes.2025.072638 - 26 November 2025
(This article belongs to the Special Issue: Computer Modeling for Future Communications and Networks)
Abstract Accurate estimation of the Direction-of-Arrival (DoA) of incident plane waves is essential for modern wireless communication, radar, sonar, and localization systems. Precise DoA information enables adaptive beamforming, spatial filtering, and interference mitigation by steering antenna array beams toward desired sources while suppressing unwanted signals. Traditional one-dimensional Uniform Linear Arrays (ULAs) are limited to elevation angle estimation due to geometric constraints, typically within the range [0, π]. To capture full spatial characteristics in environments with multipath and angular spread, joint estimation of both elevation and azimuth angles becomes necessary. However, existing 2D and 3D array geometries… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2551-2571, 2025, DOI:10.32604/cmes.2025.072471 - 26 November 2025
(This article belongs to the Special Issue: Artificial Intelligence for 6G Wireless Networks)
Abstract Indoor localization is a fundamental requirement for future 6G Intelligent Sensing and Communication (ISAC) systems, enabling precise navigation in environments where Global Positioning System (GPS) signals are unavailable. Existing methods, such as map-based navigation or site-specific fingerprinting, often require intensive data collection and lack generalization capability across different buildings, thereby limiting scalability. This study proposes a cross-site, map-free indoor localization framework that uses low-frequency sub-1 GHz radio signals and a Transformer-based neural network for robust positioning without prior environmental knowledge. The Transformer’s self-attention mechanisms allow it to capture spatial correlations among anchor nodes, facilitating accurate… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2573-2599, 2025, DOI:10.32604/cmes.2025.070426 - 26 November 2025
(This article belongs to the Special Issue: Next-Generation Intelligent Networks and Systems: Advances in IoT, Edge Computing, and Secure Cyber-Physical Applications)
Abstract The Industrial Internet of Things (IIoT), combined with the Cyber-Physical Systems (CPS), is transforming industrial automation but also poses great cybersecurity threats because of the complexity and connectivity of the systems. There is a lack of explainability, challenges with imbalanced attack classes, and limited consideration of practical edge–cloud deployment strategies in prior works. In the proposed study, we suggest an Impact-Aware Taxonomy-Driven Machine Learning Framework with Edge Deployment and SHapley Additive exPlanations (SHAP)-based Explainable AI (XAI) to attack detection and classification in IIoT-CPS settings. It includes not only unsupervised clustering (K-Means and DBSCAN) to extract… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2601-2616, 2025, DOI:10.32604/cmes.2025.073039 - 26 November 2025
(This article belongs to the Special Issue: Machine learning and Blockchain for AIoT: Robustness, Privacy, Trust and Security)
Abstract Emerging technologies and the Internet of Things (IoT) are integrating for the growth and development of heterogeneous networks. These systems are providing real-time devices to end users to deliver dynamic services and improve human lives. Most existing approaches have been proposed to improve energy efficiency and ensure reliable routing; however, trustworthiness and network scalability remain significant research challenges. In this research work, we introduce an AI-enabled Software-Defined Network (SDN)- driven framework to provide secure communication, trusted behavior, and effective route maintenance. By considering multiple parameters in the forwarder selection process, the proposed framework enhances network More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2617-2630, 2025, DOI:10.32604/cmes.2025.071190 - 26 November 2025
Abstract Federated Learning enables privacy-preserving training of Transformer-based language models, but remains vulnerable to backdoor attacks that compromise model reliability. This paper presents a comparative analysis of defense strategies against both classical and advanced backdoor attacks, evaluated across autoencoding and autoregressive models. Unlike prior studies, this work provides the first systematic comparison of perturbation-based, screening-based, and hybrid defenses in Transformer-based FL environments. Our results show that screening-based defenses consistently outperform perturbation-based ones, effectively neutralizing most attacks across architectures. However, this robustness comes with significant computational overhead, revealing a clear trade-off between security and efficiency. By explicitly More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2631-2656, 2025, DOI:10.32604/cmes.2025.070545 - 26 November 2025
Abstract Zero-day attacks use unknown vulnerabilities that prevent being identified by cybersecurity detection tools. This study indicates that zero-day attacks have a significant impact on computer security. A conventional signature-based detection algorithm is not efficient at recognizing zero-day attacks, as the signatures of zero-day attacks are usually not previously accessible. A machine learning (ML)-based detection algorithm is proficient in capturing statistical features of attacks and, therefore, optimistic for zero-day attack detection. ML and deep learning (DL) are employed for designing intrusion detection systems. The improvement of absolute varieties of novel cyberattacks poses significant challenges for IDS… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2657-2682, 2025, DOI:10.32604/cmes.2025.070627 - 26 November 2025
(This article belongs to the Special Issue: Cutting-Edge Security and Privacy Solutions for Next-Generation Intelligent Mobile Internet Technologies and Applications)
Abstract The open nature and heterogeneous architecture of Open Radio Access Network (Open RAN) undermine the consistency of security policies and broaden the attack surface, thereby increasing the risk of security vulnerabilities. The dynamic nature of network performance and traffic patterns in Open RAN necessitates advanced detection models that can overcome the constraints of traditional techniques and adapt to evolving behaviors. This study presents a methodology for effectively detecting malicious traffic in Open RAN by utilizing an Artificial-Intelligence/Machine-Learning (AI/ML) Framework. A hybrid Transformer–Convolutional-Neural-Network (Transformer-CNN) ensemble model is employed for anomaly detection. The proposed model generates final More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2683-2706, 2025, DOI:10.32604/cmes.2025.071577 - 26 November 2025
(This article belongs to the Special Issue: Cutting-Edge Security and Privacy Solutions for Next-Generation Intelligent Mobile Internet Technologies and Applications)
Abstract With the continuous expansion of digital infrastructures, malicious behaviors in host systems have become increasingly sophisticated, often spanning multiple processes and employing obfuscation techniques to evade detection. Audit logs, such as Sysmon, offer valuable insights; however, existing approaches typically flatten event sequences or rely on generic graph models, thereby discarding the natural parent-child process hierarchy that is critical for analyzing multiprocess attacks. This paper proposes a structure-aware threat detection framework that transforms audit logs into a unified two-dimensional (2D) spatio-temporal representation, where process hierarchy is modeled as the spatial axis and event chronology as the More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2707-2731, 2025, DOI:10.32604/cmes.2025.072357 - 26 November 2025
(This article belongs to the Special Issue: Cutting-Edge Security and Privacy Solutions for Next-Generation Intelligent Mobile Internet Technologies and Applications)
Abstract The dynamic, heterogeneous nature of Edge computing in the Internet of Things (Edge-IoT) and Industrial IoT (IIoT) networks brings unique and evolving cybersecurity challenges. This study maps cyber threats in Edge-IoT/IIoT environments to the Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) framework by MITRE and introduces a lightweight, data-driven scoring model that enables rapid identification and prioritization of attacks. Inspired by the Factor Analysis of Information Risk model, our proposed scoring model integrates four key metrics: Common Vulnerability Scoring System (CVSS)-based severity scoring, Cyber Kill Chain–based difficulty estimation, Deep Neural Networks-driven detection scoring, and frequency… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2733-2760, 2025, DOI:10.32604/cmes.2025.072611 - 26 November 2025
(This article belongs to the Special Issue: Cutting-Edge Security and Privacy Solutions for Next-Generation Intelligent Mobile Internet Technologies and Applications)
Abstract Roaming in 5G networks enables seamless global mobility but also introduces significant security risks due to legacy protocol dependencies, uneven Security Edge Protection Proxy (SEPP) deployment, and the dynamic nature of inter-Public Land Mobile Network (inter-PLMN) signaling. Traditional rule-based defenses are inadequate for protecting cloud-native 5G core networks, particularly as roaming expands into enterprise and Internet of Things (IoT) domains. This work addresses these challenges by designing a scalable 5G Standalone testbed, generating the first intrusion detection dataset specifically tailored to roaming threats, and proposing a deep learning based intrusion detection framework for cloud-native environments.… More >
Graphic Abstract
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2761-2785, 2025, DOI:10.32604/cmes.2025.070888 - 26 November 2025
(This article belongs to the Special Issue: Cutting-Edge Security and Privacy Solutions for Next-Generation Intelligent Mobile Internet Technologies and Applications)
Abstract With the accelerated growth of the Internet of Things (IoT), real-time data processing on edge devices is increasingly important for reducing overhead and enhancing security by keeping sensitive data local. Since these devices often handle personal information under limited resources, cryptographic algorithms must be executed efficiently. Their computational characteristics strongly affect system performance, making it necessary to analyze resource impact and predict usage under diverse configurations. In this paper, we analyze the phase-level resource usage of AES variants, ChaCha20, ECC, and RSA on an edge device and develop a prediction model. We apply these algorithms… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2787-2819, 2025, DOI:10.32604/cmes.2025.072602 - 26 November 2025
(This article belongs to the Special Issue: Cutting-Edge Security and Privacy Solutions for Next-Generation Intelligent Mobile Internet Technologies and Applications)
Abstract To reconstruct vehicle accidents, data from the time of the incident—such as pre-collision speed and collision point—is essential. This data is collected and generated through various sensors installed in the vehicle. However, it may contain sensitive information about the vehicle owner. Consequently, vehicle owners tend to be reluctant to provide their vehicle data due to concerns about personal information exposure. Therefore, extensive research has been conducted on secure vehicle data trading models. Existing models primarily utilize centralized approaches, leading to issues such as single points of failure, data leakage, and manipulation. To address these problems,… More >