Special Issue "Renewable and Biosourced Adhesives-2021"

Submission Deadline: 31 December 2021
Submit to Special Issue
Guest Editors
Antonio Pizzi is Prof. Emeritus of Industrial Chemistry, ENSTIB, University of Lorraine, France. Previously Prof of Polymer Chemisry and Head of the Chemistry Dept. of the University of the Witwatersrand, Johannesburg, South Africa. Three doctorates (Dr. Chem, Rome, Italy, PhD, South Africa, D.Sc. South Africa). Several international scientific prizes (twice the finalist prize of the René Descartes top prize of the European Commission, in 2000 and 2005). Specialisations: thermosetting resins, synthesis and formulation of resins and wood adhesives, adhesives from natural products, polymer chemistry, polycondensation, wood panels and other composites technology, environment-friendly wood preservatives, materials science, wood welding. Author of 11 books published in New York and of 805 publications in refereed journals, and 41 patents, with his H-Index of 71.


The field of adhesives is in constant and rapid evolution with considerable novelties been published constantly. In particular the strong tred at present is to develop alternatives to synthetic oil-derived adhesives. A number of different trends are present on this front. Different approaches can be noticed such as (i) adhesives where a renewable biosourced material is used as partial but consistent substitution of an oil derived material leading to hybrid but definetely more enviroment friendly adhesives, and (ii) adhesives based totally or partially on synthesis materials but these being exclusively derived from totally biosourced renewable materials, and (iii) Adhesives based on totally renewable materials, modified or unmodified. All these three trends are strongly represented at present.

aminoplastics adhesives, phenolic adhesives, polyurethane adhesives, non-isocyanate polyurethane adhesives (NIPU), acrylic adhesives, epoxy adhesives, renewable resources, environment friendly, partially or totally biobased.

Published Papers
  • Plasma Treatment Induced Chemical Changes of Alkali Lignin to Enhance the Performances of Lignin-Phenol-Formaldehyde Resin Adhesive
  • Abstract Alkali lignin was processed by plasma and then used in modification of phenol formaldehyde resin in this study. Chemical structural changes of lignin which was processed by plasma as well as bonding strength, tensile property, curing performance and thermal property of the prepared phenol formaldehyde resin which was modified by the plasma processed lignin were analyzed. Results demonstrated that: (1) Alkali lignin was degraded after the plasma processing. The original groups were destroyed, and the aromatic rings collected abundant free radicals and oxygen-containing functional groups like hydroxyls, carbonyls, carboxyls and acyls were introduced into increase the reaction activity of lignin… More
  •   Views:302       Downloads:225        Download PDF