Special Issue "Renewable materials for sustainable development"

Submission Deadline: 15 August 2020
Submit to Special Issue
Guest Editors
Dr. Bernard Saw Lip Huat is currently an assistant professor in the Universiti Tunku Abdul Rahman (UTAR), Malaysia. He received his Master degree from University of Malaya (UM), Malaysia in 2009 and Ph.D. degree from National University of Singapore (NUS), Singapore in 2015. He is the chairperson for the UTAR Centre for Vehicular Technology and Chartered Engineer registered with the Engineering Council (UK). His research interests include green materials, renewable energy, thermal management, energy storage system and numerical modeling such as CFD, electrochemical modeling and electro-thermal modeling of the energy storage system. He is the co-chair for the International Conference on Sustainable Energy and Green Technology (SEGT 2018 & 2019).
Dr. Chong Wen Tong joined the Department of Mechanical Engineering, University of Malaya as associate professor after spending 10 years in various industries. He is a Chartered Engineer registered with the Engineering Council (UK). He served as the Programme Coordinator (Mechanical) for about 5 years (2011-2015) and currently he is the Head of UM Centre for Energy Sciences. He has co-authored >110 ISI technical articles (h-index = 27). He is the Conference Chair of International Conference on Sustainable Energy and Green Technology (SEGT 2018 & 2019).
Dr. Shufeng Song is currently an associate professor in the College of Aerospace Engineering of Chongqing University, China. He received his Ph.D. degree from Shanghai Institute of Ceramics, Chinese Academy of Sciences, China, in 2011. His research interests include green materials, energy storage materials, solid electrolytes and batteries.

Summary

The special issue on renewable materials for sustainable development covers research in applied or fundamental science of nano-, micro-, meso- and macro-scale aspects of green materials for sustainable development. It focuses on recent progress and research studies of materials related to sustainable development applications, particularly in the development of alternatives to traditional materials or processes that offer environmental advantages. The papers may present theoretical, numerical or experimental findings within the context of green materials with an emphasis on reducing the use of hazardous substances in the design, manufacturing and application of commercial products. Interesting topics considered are including but not limited to the following:
● Emerging materials for sustainable energy and environment
● Innovative materials for water-energy-health nexus
● Eco-building materials for sustainability and innovative construction
● Materials applications related to green energy
● Bio-based materials and bioenergy


Keywords
Green materials; sustainable development; eco-building materials; bio-materials; green energy

Published Papers
  • Interfacial Modification of Corn Stalk Cellulose Reinforced Used Rubber Powder Composites Treated with Coupling Agent
  • Abstract Corn stalk cellulose (CS)/used rubber powder (RP) composites were prepared by mixing, the silane coupling agent 3-Mercaptopropyl trimethoxysilane (KH590), r-Aminopropyltrieth oxysilane (KH550), isopropyl dioleic (dioctylphosphate) titanate (HY101) and bis-(γ-triethoxysilylpropyl)- tetrasulfide (Si69) were used to modify the interface of composites. The effects of the CS and coupling agents on the mechanical properties, thermal properties, interfacial morphology and structure of the composites were investigated, respectively. The results showed that the addition of CS could effectively improve the mechanical properties of the composites. Compared with the untreated composites, the interfacial bonding between CS and RP was significantly improved by the coupling modifi- cation… More
  •   Views:52       Downloads:35        Download PDF

  • Experimental Research on the Physical and Mechanical Properties of Concrete with Recycled Plastic Aggregates
  • Abstract In order to study the effect of recycled plastic particles on the physical and mechanical properties of concrete, recycled plastic concrete with 0, 3%, 5% and 7% content (by weight) was designed. The compressive strength, splitting tensile strength and the change of mass caused by water absorption during curing were measured. The results show that the strength of concrete is increased by adding recycled plastic into concrete. Among them, the compressive strength and the splitting tensile strength of concrete is the best when the plastic content is 5%. With the increase of plastic content, the development speed of early strength… More
  •   Views:475       Downloads:264        Download PDF

  • NaOH/Urea Swelling Treatment and Hydrothermal Degradation of Waste Cotton Fiber
  • Abstract In this study, waste cotton fabric was used as cellulose raw material and pretreated in aqueous NaOH/urea solution system to investigate the effect of NaOH/urea pretreatment solution on the hydrolysis of cotton fiber. The cotton fiber was pretreated with different conditions of aqueous NaOH/urea solution, and the pretreated cotton fiber was hydrolyzed under the same conditions as the original cotton fiber. The results of characterization analysis showed that water retention value of pretreated cotton fiber was higher than that of unpretreated sample. Moreover, the cotton fiber presented both a convoluted structure and a coarser surface, XRD results suggested that the… More
  •   Views:573       Downloads:344        Download PDF

  • One-Step Synthesis of Magnetic Zeolite from Zinc Slag and Circulating Fluidized Bed Fly Ash for Degradation of Dye Wastewater
  • Abstract In this study, a magnetic P zeolite was directly synthesized by utilization of industrial solid wastes of zinc slag (ZS) and circulating fluidized bed fly ash (CFBFA) via one-step hydrothermal method. The effects of different CFBFA/ZS ratios and hydrothermal times on the as-synthesized zeolite were investigated. The X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) results indicated that the magnetic P zeolite possessed well-defined crystals and superparamagnetism. The as-prepared zeolite was employed as a Fenton-like solid catalyst for degradation of direct green B dye wastewater. It was discovered that the magnetic P zeolite took the advantage of rapid separation and… More
  •   Views:489       Downloads:266        Download PDF

  • Synthesis and Interfacial Properties of Bio-Based Zwitterionic Surfactants Derived from Different Fatty Acids in Non-Edible Vegetable Oils
  • Abstract Waste cooking oils and non-edible vegetable oils are abundant and renewable resources for bio-based materials which have showed great potential applications in many industries. In this study, five fatty acids commonly found in non-edible vegetable oils, including palmitic acid, stearic acid, linoleic acid, linolenic acid, ricinoleic acid, and their mixtures, were used to produce bio-based zwitterionic surfactants through a facile and high-yield chemical modification. These surfactants demonstrated excellent surface/interfacial properties with the minimum surface tensions ranging from 28.4 mN/m to 32.8 mN/m in aqueous solutions. The interfacial tensions between crude oil and surfactant solutions were remarkably reduced to lower values… More
  •   Views:334       Downloads:263        Download PDF

  • Sunflower-Like SrCo2S4@f-MWCNTs Hybrid Wrapped by Engineering N-Reduced Graphene Oxide for High Performance Dye-Sensitized Solar Cells
  • Abstract A novel sunflower-like nanocomposite of SrCo2S4 nanoflakes and functionalized multiwall carbon nanotubes (f-MWCNTs) entanglement enveloped in nitrogen-reduced graphene oxide (N-RGO) is prepared by a cheap process. The unique entanglement structure of the material exhibits higher specific surface area, better electrical conductivity and other properties. This helps to reduce the transfer resistance in the photoelectric process of the battery and improve the electrochemical activity, thus increasing the photoelectric conversion efficiency of the battery. The new ternary cobalt-based sulfide material can replace platinum as the counter electrode (CE) material loaded on dye-sensitized solar cells (DSSCs). DSSCs with SrCo2S4@f-MWCNTs@N-RGO (SCS@f-M@N-R) as CE material… More
  •   Views:525       Downloads:278        Download PDF

  • Experimental Study of Waste Tire Rubber, Wood-Plastic Particles and Shale Ceramsite on the Performance of Self-Compacting Concrete
  • Abstract In recent decades, the utilization of waste tires, plastic and artificial shale ceramsite as alternative fine aggregate to make self-compacting concrete (SCC) has been recognized as an eco-friendly and sustainable method to manufacture renewable construction materials. In this study, three kinds of recycled aggregates: recycled tire rubber particles, wood-plastic particles, artificial shale ceramsite were used to replace the sand by different volume (5%, 10%, 20% and 30%), and their effects on the fresh and hardened properties of SCC were investigated. The slump flow and V-funnel tests were conducted to evaluate the fresh properties of modified-SCC mixtures. The hardened properties include… More
  •   Views:2045       Downloads:520        Download PDF