Journal of Renewable Materials

About the Journal

Journal of Renewable Materials (JRM) is an interdisciplinary journal publishing original research covering all aspects of bio-based materials, sustainable materials, and green chemistry. The scope of the journal is devoted to reports of new and original experimental and theoretical research in the areas of materials, engineering, physics, bioscience, and chemistry, which are related to the critical renewable and recyclable applications.

Indexing and Abstracting

Science Citation Index-Expanded (Web of Science); 2020 Impact Factor 1.67; Current Contents: Physical, Chemical & Earth Sciences; Scopus Citescore (Impact per Publication 2020): 2.0; SNIP (Source Normalized Impact per Paper 2020): 0.574; JCR in the subject categories Materials Science, Composites (Q3) ; Polymer Science (Q3); and the new subject category Green & Sustainable Science & Technology (Q4); Scopus; Ingenta Connect; Chemical Abstracting Services; Polymer Library: Google Scholar; AGRICOLA; Meta; Baidu Xueshu (China); Portico, etc...

  • A Review of Recent Advances in Hybrid Natural Fiber Reinforced Polymer Composites
  • Abstract Natural fiber reinforced polymer composites (NFRCs) have demonstrated great potential for many different applications in various industries due to their advantages compared to synthetic fiber-reinforced composites, such as low environmental impact and low cost. However, one of the drawbacks is that the NFRCs present relatively low mechanical properties and the absorption of humidity due to the hydrophilic characteristic of the natural fibre. One method to increase their performance is hybridization. Therefore, understanding the properties and potential of using multiple reinforcement’s materials to develop hybrid composites is of great interest. This paper provides an overview of the recent advances in hybrid… More
  • Graphical Abstract

    A Review of Recent Advances in Hybrid Natural Fiber Reinforced Polymer Composites
  •   Views:368       Downloads:183        Download PDF
  • Enhanced Water Resistance Performance of Castor Oil—Based Waterborne Polyurethane Modified by Methoxysilane Coupling Agents via Thiol-Ene Photo Click Reaction
  • Abstract Nowadays, waterborne polyurethanes (WPUs) prepared from renewable resources has attracted more and more attention. However, due to its structure, the prepared films easily swells in water and greatly affects the application range of WPUs. Therefore, solving the problem of water resistance is a way to improve the application range of WPUs. In this study, a series of WPU dispersions were prepared using castor oil as the bio-based polyol. Besides, the thiol-ene photo click reaction was carried out on the WPU films for silane modification. The effect of the silane modification on the chemical structures of the WPU dispersions and the… More
  • Graphical Abstract

    Enhanced Water Resistance Performance of Castor Oil—Based Waterborne Polyurethane Modified by Methoxysilane Coupling Agents via Thiol-Ene Photo Click Reaction
  •   Views:228       Downloads:130        Download PDF
  • Properties and Applications of Bamboo Fiber–A Current-State-of-the Art
  • Abstract Fibers are used in many forms in engineering applications–one of the most common being used as reinforcement. Due to its renewable short natural growth cycle and abundance of bamboo resources, bamboo fiber has attracted attention over other natural fibers. Bamboo fiber has a complex natural structure but offers excellent mechanical properties, which are utilized in the textile, papermaking, construction, and composites industry. However, bamboo fibers can easily absorb moisture and are prone to corrosion limiting their use in engineering applications. Therefore, a better understanding of bamboo fiber is particularly important. This paper reviews all existing research on the mechanical characterization… More
  •   Views:846       Downloads:282        Download PDF
  • The Use of as Natural Coagulant in Algerian Drinking Water Treatment Plant
  • Abstract The purpose of this work is the study the ability of the plant material Aloe vera to act as natural coagulant using raw water obtained from a drinking water treatment plant (Mila, Algeria). Different solvents such as: NaCl; NaOH and HCl were used as chemical activators to extract the active components from the Aloe vera plant, and different coagulation-flocculation experiments were conducted in a jar test apparatus to evaluate the performance of the extracted coagulant. Also, the effect of coagulant dose on some water parameters such as turbidity, pH, total alkalinity and organic matter were investigated. The results showed that… More
  • Graphical Abstract

    The Use of  as Natural Coagulant in Algerian Drinking Water Treatment Plant
  •   Views:223       Downloads:143        Download PDF
  • A Soy Protein-Based Composite Film with a Hierarchical Structure Inspired by Nacre
  • Abstract Soy protein-based composite film is a potential replacement for petroleum-based film with multipurpose applications and cleaner production. It is difficult to improve both the tensile strength and toughness of a protein-based film without sacrificing its elongation. In this study, inspired by the hierarchical structure of nacre, a facile yet delicate strategy was developed to fabricate a novel bio-based film with excellent toughness and high strength. Triglycidylamine (TGA) crosslinked soy protein (SPI) as hard phase and thermoplastic polyurethane elastomer (TPU) as soft phase comprise an alternative lay-up hierarchical structure. The interface of these two phases is enhanced using triglycidylamine (TGA) surface-modified… More
  •   Views:194       Downloads:116        Download PDF
  • g-C3N4 Derived Materials for Photocatalytic Hydrogen Production: A Mini Review on Design Strategies
  • Abstract Hydrogen production through solar energy is one of the most important pathways to meet the growing demand of renewable energy, and photocatalyst participation in solar hydrolytic hydrogen production has received great attention in recent years in terms of low cost, high efficiency, and flexible design. Particularly, g-C3N4 (Graphitic-like carbon nitride material), as a unique material, can catalyze the hydrogen production process by completing the separation and transmission of charge. The easily adjustable pore structure/surface area, dimension, band-gap modulation and defect have shown great potential for hydrogen production from water cracking. In this review, the most recent advance of g-C3N4 including… More
  • Graphical Abstract

    g-C<sub>3</sub>N<sub>4</sub> Derived Materials for Photocatalytic Hydrogen Production: A Mini Review on Design Strategies
  •   Views:198       Downloads:116        Download PDF
  • A Comprehensive Review on Oxygen Reduction Reaction in Microbial Fuel Cells
  • Abstract The focus of microbial fuel cell research in recent years has been on the development of materials, microbes, and transfer of charges in the system, resulting in a substantial improvement in current density and improved power generation. The cathode is generally recognized as the limiting factor due to its high-distance proton transfer, slow oxygen reduction reaction (ORR), and expensive materials. The heterogeneous reaction determines power generation in MFC. This comprehensive review describes-recent advancements in the development of cathode materials and catalysts associated with ORR. The recent studies indicated the utilization of different metal oxides, the ferrite-based catalyst to overcome this… More
  •   Views:252       Downloads:109        Download PDF
  • Finite Element Analysis on the Uniaxial Compressive Behavior of Concrete with Large-Size Recycled Coarse Aggregate
  • Abstract To model the concrete with complex internal structure of concrete with large sized aggregates the effect of internal structure on uniaxial compression behavior are studied. Large-sized recycled aggregates behave differently in the concrete matrix. To understand the influence on concrete matrix, a finite element model was developed to model recycled aggregate concrete composed of multiple randomly distributed irregular aggregates and cement mortar. The model was used to calculate the effect of large-size recycled coarse aggregate (LRCA) on the strength of recycled aggregate concrete and simulate the compressive strength of cubes and prisms. The factors such as the strength of new… More
  •   Views:209       Downloads:113        Download PDF
  • High Permeability of Boron along the Transverse Direction of Wood under High-Voltage Electrostatic Field (HVEF) Treatment
  • Abstract Permeability of wood preservative is one of the most significant factors for protection of wood construction. Anisotropic flow permeability was involved in different directions of wood with higher flow resistance in the transverse and lower longitudinal directions. In this study, boron acid solution was brushed onto the tangential section of air-dried wood cubes and boron penetration along wood transverse direction was investigated under free diffusion, vacuum and HVEF treatments. Multi-scale boron distribution, FTIR measurement, leaching property, mechanical properties and fungistatic characteristic were investigated for free diffusion, vacuum and HVEF treated samples respectively. The results revealed that boron exhibited high permeability… More
  •   Views:189       Downloads:145        Download PDF
  • Adsorption Properties and Cost of Dicarboxylic Nanocellulose on Copper Ions for Wastewater Treatment
  • Abstract The accumulation of Cu2+ in water is a potential threat to human health and environment. Dicarboxylic nanocellulose (DNC) with rich carboxyl groups was prepared through the NaIO4–NaClO2 sequential oxidation method to efficiently remove copper ions, and the Cu2+ adsorption properties and cost were studied. The maximum adsorption capacity reached 184.2 mg/g at pH 6 and an adsorbent dose of 5 g/L. Theoretically, the maximum adsorption capacities of monocarboxylic nanocellulose (MNC), DNC, and tricarboxylic nanocellulose (TNC) with carboxyl groups as the main adsorption sites were calculated to be 228.7, 261.3, and 148.1 mg/g, respectively. The Cu2+ adsorption costs of MNC, DNC, and TNC were… More
  • Graphical Abstract

    Adsorption Properties and Cost of Dicarboxylic Nanocellulose on Copper Ions for Wastewater Treatment
  •   Views:209       Downloads:100        Download PDF
  • Lactoferrin-Conjugated Polylactic Acid Nanobubbles Encapsulated Perfluoropentane as a Contrast Agent for Ultrasound/Magnetic Resonance Dual-Modality Imaging
  • Abstract The development of contrast agents that can be activated by multiple modes is of great significance for tumor diagnosis. In this study, the lactoferrin (Lf)-conjugated polylactic acid (PLLA) nanobubbles (Lf-PLLA NBs) were used to encapsulate liquid perfluoropentane (PFP) with the double emulsion method, creating PFP loaded (PFP/Lf-PLLA) NBs for the ultrasound/magnetic resonance dual-modality imaging of subcutaneous tumor. The particle diameter and stability of nanobubbles were investigated by photon correlation spectroscopy. The biocompatibility of nanobubbles was preliminarily evaluated by cell proliferation and migration assay, hemolysis rate, and blood biochemistry analysis. A B-mode clinical ultrasound real-time imaging system was used to perform… More
  •   Views:173       Downloads:117        Download PDF
  • Drag Reduction Characteristics of Microstructure Inspired by the Cross Section of Barchan Dunes under High Speed Flow Condition
  • Abstract A new type of microstructure inspired by the cross section of barchan dunes was proposed to reduce windage, which was considered as a passive drag reduction technology in aerospace manufacturing field. Computational fluid dynamics method was carried out to discuss the effect of the microstructure on the skin friction reduction under high velocity flow condition. Different microstructure heights were employed to survey the reduction of drag. The results illustrated that the appearance of microstructure led to a generation of pressure drag in non-smooth model (with microstructures inspired by cross section of barchan dune) in contrast to smooth model. However, the… More
  • Graphical Abstract

    Drag Reduction Characteristics of Microstructure Inspired by the Cross Section of Barchan Dunes under High Speed Flow Condition
  •   Views:181       Downloads:114        Download PDF
  • Green Method, Optical and Structural Characterization of ZnO Nanoparticles Synthesized Using Leaves Extract of M. oleifera
  • Abstract ZnO nanoparticles (ZnO-NP) present innovative optical, electrical, and magnetic properties that depend on specific characteristics, e.g., size, distribution, and morphology. Thus, these properties are essential to address various applications in areas such as electronics, medicine, energy, and others. In addition, the performance of this ZnONP depends of their preparation which can be done by chemical, physical, and biological methods. Meanwhile, nowadays, the main interest in developing ZnO-NP synthesis through biological methods bases on the decrease of use of toxic chemicals or energy applied to the procedures, making the process more cost-effective and environmentally friendly. However, the large-scale production of nanoparticles… More
  •   Views:837       Downloads:291        Download PDF
  • Analysis of Crack Expansion and Morphology of Cross-Laminated Timber Planar Shear Test
  • Abstract To describe the dynamic cracking process of the CLT vertical layer, the correlation between a load-displacement curve, specimen cracking, and planar shear failure mechanism of the CLT were explored. A three-point bending test and an improved planar shear test are used to evaluate the shear performance of the CLT. In this study, the load-displacement curve is recorded, the experimental part is synchronized with the video, the dynamic process of cracking of the vertical layer is observed and analyzed throughout the test. From the load-displacement curve, the image characteristics of the initial cracking and the sudden increase of the cracking of… More
  • Graphical Abstract

    Analysis of Crack Expansion and Morphology of Cross-Laminated Timber Planar Shear Test
  •   Views:184       Downloads:113        Download PDF