
The Journal of Renewable Materials (JRM) is an interdisciplinary journal publishing original research covering all aspects of renewable materials, namely bio-based materials, sustainable materials, green chemistry and including recycling and recovery of spent materials. The scope of the journal is devoted to reports of new and original experimental and theoretical research in the areas of materials, engineering, physics, bioscience, processing, environmental science and chemistry, which are related to renewable materials and their applications.
Ei Compendex/Engineering Village (Elsevier); Scopus Citescore (Impact per Publication 2024): 4.9; SNIP (Source Normalized Impact per Paper 2024): 0.592; Google Scholar h5-index 31, ranking 5 in Wood Science &Technology; Chemical Abstracting Services; Polymer Library; Baidu Xueshu (China); Portico, etc...
Notice: Please make new submissions of JRM to the new system (ScholarOne) (https://mc03.manuscriptcentral.com/jrenewmater) from 25 September 2024. To view your previous submissions, please access TSP system (https://ijs.tspsubmission.com/homepage).
Open Access
ARTICLE
Journal of Renewable Materials, Vol.13, No.12, pp. 2281-2296, 2025, DOI:10.32604/jrm.2025.02025-0067 - 23 December 2025
Abstract The valorization of plant biomass towards high-value chemicals is a global trend aimed at solving the problem of the huge accumulation of lignocellulosic waste. Plant polysaccharides are natural polymers that make up about 20% by weight of biomass, with a unique variety of structures and properties that depend on the type of raw materials and the method of their extraction. In this study, the effect of variability of the oxidative delignification process conditions in the «acetic acid-hydrogen peroxide-water-(NH4)6Mo7O24» on the extraction and properties of aspen (Populus tremula) wood hemicelluloses was investigated for the first time. The developed… More >
Graphic Abstract
Open Access
ARTICLE
Journal of Renewable Materials, Vol.13, No.12, pp. 2297-2308, 2025, DOI:10.32604/jrm.2025.02025-0098 - 23 December 2025
Abstract Biomass-derived hard carbon has gradually become an important component of sodium-ion batteries’ anodes. In this work, Setaria viridis, a widely distributed plant, was employed as a precursor to synthesize hard carbon anodes for sodium-ion batteries. However, the hard carbon derived from raw precursors contains substantial impurities, which limit the performance of the obtained hard carbon. With different chemical etching processes, the content of impurities in the resultants was reduced to varying degrees. The optimized hard carbon anode delivered a reversible capacity of 198 mAh g−1 at a current density of 0.04 A g−1. This work shows the More >
Graphic Abstract
Open Access
REVIEW
Journal of Renewable Materials, Vol.13, No.12, pp. 2309-2353, 2025, DOI:10.32604/jrm.2025.02025-0108 - 23 December 2025
(This article belongs to the Special Issue: Valorization of Lignocellulosic Biomass for Functional Materials)
Abstract The current global shortage of oil resources and the pollution problems caused by traditional barrier materials urgently require the search for new substitutes. Biodegradable bio-based barrier materials possess the characteristics of being renewable, environmentally friendly, and having excellent barrier properties. They have become an important choice in fields such as food packaging, agricultural film covering, and medical protection. This review systematically analyzes the design and research of this type of material, classifying biobased and biodegradable barrier materials based on the sources of raw materials and synthesis pathways. It also provides a detailed introduction to the More >
Open Access
ARTICLE
Journal of Renewable Materials, Vol.13, No.12, pp. 2355-2373, 2025, DOI:10.32604/jrm.2025.02025-0078 - 23 December 2025
(This article belongs to the Special Issue: Advances in Eco-friendly Wood-Based Composites: Design, Manufacturing, Properties and Applications)
Abstract Activated charcoals were synthesized from sugar palm bunches (SPB) of the native tree of Arenga longipes in Indonesia. The synthesized activated charcoal (AC) was characterized, and utilized as an absorbent for heavy metals (lead/Pb and copper/Cu) through thermal activation. The synthesis of AC was accomplished through furnace activation at temperatures of 500°C, 600°C, 700°C, and 800°C. Acid chlorides were blended with the SPB-AC samples at 5% impregnation level and subsequently subjected to washing for activation, resulting in the elimination of volatile substances and ash content, which facilitates the development of a porous structure in the activated… More >
Open Access
REVIEW
Journal of Renewable Materials, Vol.13, No.12, pp. 2375-2430, 2025, DOI:10.32604/jrm.2025.02025-0109 - 23 December 2025
Abstract The increasing need for sustainable energy and the environmental impacts of reliance on fossil fuels have sparked greater interest in biomass as a renewable energy source. This review provides an in-depth assessment of bio-oil and biochar generation through the pyrolysis of sawdust, a significant variety of lignocellulosic biomass. The paper investigates different thermochemical conversion methods, including fast, slow, catalytic, flash, and co-pyrolysis, while emphasizing their operational parameters, reactor designs, and effects on product yields. The influence of temperature, heating rate, and catalysts on enhancing the quality and quantity of bio-oil and biochar is thoroughly analyzed. More >
Graphic Abstract
Open Access
ARTICLE
Journal of Renewable Materials, Vol.13, No.12, pp. 2431-2451, 2025, DOI:10.32604/jrm.2025.02024-0063 - 23 December 2025
(This article belongs to the Special Issue: Special issue from 1st International Conference of Natural Fiber and Biocomposite (1st ICONFIB) 2024 )
Abstract The development of the bioplastics industry addresses critical issues such as environmental pollution and food safety concerns. However, the industrialization of bioplastics remains underdeveloped due to challenges such as high production costs and suboptimal material characteristics. To enhance these characteristics, this study investigates bioplastics reinforced with Nanocrystalline Cellulose (NCC) derived from Oil Palm Empty Fruit Bunches (OPEFB), incorporating dispersing agents. The research employs a Central Composite Design from the Response Surface Methodology (RSM) with two factors: the type of dispersing agent (KCl and NaCl) and the NCC concentration from OPEFB (1%–5%), along with the dispersing… More >
Open Access
ARTICLE
Journal of Renewable Materials, Vol.13, No.12, pp. 2453-2478, 2025, DOI:10.32604/jrm.2025.02025-0137 - 23 December 2025
(This article belongs to the Special Issue: Advances in Eco-friendly Wood-Based Composites: Design, Manufacturing, Properties and Applications)
Abstract This research investigates the behavior of sandwich glued laminated bamboo (Glubam) structures with a core formed by biodegradable plastic fibers, specifically polylactic acid (PLA), fabricated using 3D printing technology. The influence of various fiber printing orientations (0° and 45/135°) on tensile and compressive properties was investigated. The experimental results indicated that polylactic acid with calcium carbonate (PLA+) printed unidirectionally and aligned with the loading direction (0°) exhibits superior tensile and compressive strengths compared to specimens printed bidirectionally at 45/135°. Furthermore, the effect of additives on bioplastics of carbon fiber (PLA-CF) and glass fiber (PLA-GF) additives… More >
Graphic Abstract
Open Access
REVIEW
Journal of Renewable Materials, Vol.13, No.12, pp. 2479-2524, 2025, DOI:10.32604/jrm.2025.02025-0127 - 23 December 2025
(This article belongs to the Special Issue: Advances in Eco-friendly Wood-Based Composites: Design, Manufacturing, Properties and Applications)
Abstract Finger-joint lumber is a sustainable building product commercialized as a structural solution for beams, pillars and other thin flat load-bearing elements. This study aims to study finger-joint lumber and its industry to promote this engineered wood product. The first research stage assessed the collection of publications on finger-joint lumber available globally, in which a structured protocol was developed to prospect studies based on two complementary methodologies: PRISMA 2020 using Scopus and Web of Science databases, and Snowball using both forward and backward models to complete with additional literature. The second research stage assessed finger-joint lumber… More >