CMC Open Access

Computers, Materials & Continua

ISSN:1546-2218 (print)
ISSN:1546-2226 (online)
Publication Frequency:Monthly

  • Online
    Articles

    7134

  • on board
    editors

    203

Special Issues
Table of Content


About the Journal

Computers, Materials & Continua is a peer-reviewed Open Access journal that publishes all types of academic papers in the areas of computer networks, artificial intelligence, big data, software engineering, multimedia, cyber security, internet of things, materials genome, integrated materials science, and data analysis, modeling, designing and manufacturing of modern functional and multifunctional materials. This journal is published monthly by Tech Science Press.

Indexing and Abstracting

SCI: 2024 Impact Factor 1.7; Scopus CiteScore (Impact per Publication 2024): 6.1; SNIP (Source Normalized Impact per Paper 2024): 0.675; Ei Compendex; Cambridge Scientific Abstracts; INSPEC Databases; Science Navigator; EBSCOhost; ProQuest Central; Zentralblatt für Mathematik; Portico, etc.

  • Open Access

    REVIEW

    Implementation of Human-AI Interaction in Reinforcement Learning: Literature Review and Case Studies

    Shaoping Xiao1,*, Zhaoan Wang1, Junchao Li2, Caden Noeller1, Jiefeng Jiang3, Jun Wang4

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-62, 2026, DOI:10.32604/cmc.2025.072146 - 09 December 2025
    (This article belongs to the Special Issue: Advances in Object Detection: Methods and Applications)
    Abstract The integration of human factors into artificial intelligence (AI) systems has emerged as a critical research frontier, particularly in reinforcement learning (RL), where human-AI interaction (HAII) presents both opportunities and challenges. As RL continues to demonstrate remarkable success in model-free and partially observable environments, its real-world deployment increasingly requires effective collaboration with human operators and stakeholders. This article systematically examines HAII techniques in RL through both theoretical analysis and practical case studies. We establish a conceptual framework built upon three fundamental pillars of effective human-AI collaboration: computational trust modeling, system usability, and decision understandability. Our… More >

  • Open Access

    REVIEW

    Artificial Intelligence Design of Sustainable Aluminum Alloys: A Review

    Zhijie Lin1, Chao Yang1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-33, 2026, DOI:10.32604/cmc.2025.070735 - 09 December 2025
    Abstract Sustainable aluminum alloys, renowned for their lower energy consumption and carbon emissions, present a critical path towards a circular materials economy. However, their design is fraught with challenges, including complex performance variability due to impurity elements and the time-consuming, cost-prohibitive nature of traditional trial-and-error methods. The high-dimensional parameter space in processing optimization and the reliance on human expertise for quality control further complicate their development. This paper provides a comprehensive review of Artificial Intelligence (AI) techniques applied to sustainable aluminum alloy design, analyzing their methodologies and identifying key challenges and optimization strategies. We review how… More >

  • Open Access

    REVIEW

    From Identification to Obfuscation: A Survey of Cross-Network Mapping and Anti-Mapping Methods

    Shaojie Min1, Yaxiao Luo1, Kebing Liu1, Qingyuan Gong2, Yang Chen1,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.073175 - 09 December 2025
    (This article belongs to the Special Issue: Cyberspace Mapping and Anti-Mapping Techniques)
    Abstract User identity linkage (UIL) across online social networks seeks to match accounts belonging to the same real-world individual. This cross-platform mapping enables accurate user modeling but also raises serious privacy risks. Over the past decade, the research community has developed a wide range of UIL methods, from structural embeddings to multimodal fusion architectures. However, corresponding adversarial and defensive approaches remain fragmented and comparatively understudied. In this survey, we provide a unified overview of both mapping and anti-mapping methods for UIL. We categorize representative mapping models by learning paradigm and data modality, and systematically compare them… More >

  • Open Access

    REVIEW

    Toward Robust Deepfake Defense: A Review of Deepfake Detection and Prevention Techniques in Images

    Ahmed Abdel-Wahab1, Mohammad Alkhatib2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-34, 2026, DOI:10.32604/cmc.2025.070010 - 09 December 2025
    Abstract Deepfake is a sort of fake media made by advanced AI methods like Generative Adversarial Networks (GANs). Deepfake technology has many useful uses in education and entertainment, but it also raises a lot of ethical, social, and security issues, such as identity theft, the dissemination of false information, and privacy violations. This study seeks to provide a comprehensive analysis of several methods for identifying and circumventing Deepfakes, with a particular focus on image-based Deepfakes. There are three main types of detection methods: classical, machine learning (ML) and deep learning (DL)-based, and hybrid methods. There are… More >

  • Open Access

    REVIEW

    Dual-Mode Data-Driven Iterative Learning Control: Applications in Precision Manufacturing and Intelligent Transportation Systems

    Lei Wang1,2, Menghan Wei2, Ziwei Huangfu3, Shunjie Zhu2, Xuejian Ge1,*, Zhengquan Li4

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-32, 2026, DOI:10.32604/cmc.2025.071295 - 09 December 2025
    (This article belongs to the Special Issue: Advanced Networking Technologies for Intelligent Transportation and Connected Vehicles)
    Abstract Iterative Learning Control (ILC) provides an effective framework for optimizing repetitive tasks, making it particularly suitable for high-precision applications in both precision manufacturing and intelligent transportation systems (ITS). This paper presents a systematic review of ILC’s developmental progress, current methodologies, and practical implementations across these two critical domains. The review first analyzes the key technical challenges encountered when integrating ILC into precision manufacturing workflows. Through case studies, it evaluates demonstrated improvements in positioning accuracy, surface finish quality, and production throughput. Furthermore, the study examines ILC’s applications in ITS, with particular focus on vehicular motion control More >

  • Open Access

    REVIEW

    Review of Metaheuristic Optimization Techniques for Enhancing E-Health Applications

    Qun Song1, Chao Gao1, Han Wu1, Zhiheng Rao1, Huafeng Qin1,*, Simon Fong1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-49, 2026, DOI:10.32604/cmc.2025.070918 - 09 December 2025
    Abstract Metaheuristic algorithms, renowned for strong global search capabilities, are effective tools for solving complex optimization problems and show substantial potential in e-Health applications. This review provides a systematic overview of recent advancements in metaheuristic algorithms and highlights their applications in e-Health. We selected representative algorithms published between 2019 and 2024, and quantified their influence using an entropy-weighted method based on journal impact factors and citation counts. CThe Harris Hawks Optimizer (HHO) demonstrated the highest early citation impact. The study also examined applications in disease prediction models, clinical decision support, and intelligent health monitoring. Notably, the More >

  • Open Access

    REVIEW

    Transforming Healthcare with State-of-the-Art Medical-LLMs: A Comprehensive Evaluation of Current Advances Using Benchmarking Framework

    Himadri Nath Saha1, Dipanwita Chakraborty Bhattacharya2,*, Sancharita Dutta3, Arnab Bera3, Srutorshi Basuray4, Satyasaran Changdar5, Saptarshi Banerjee6, Jon Turdiev7

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-56, 2026, DOI:10.32604/cmc.2025.070507 - 09 December 2025
    Abstract The emergence of Medical Large Language Models has significantly transformed healthcare. Medical Large Language Models (Med-LLMs) serve as transformative tools that enhance clinical practice through applications in decision support, documentation, and diagnostics. This evaluation examines the performance of leading Med-LLMs, including GPT-4Med, Med-PaLM, MEDITRON, PubMedGPT, and MedAlpaca, across diverse medical datasets. It provides graphical comparisons of their effectiveness in distinct healthcare domains. The study introduces a domain-specific categorization system that aligns these models with optimal applications in clinical decision-making, documentation, drug discovery, research, patient interaction, and public health. The paper addresses deployment challenges of Medical-LLMs, More >

  • Open Access

    REVIEW

    FSL-TM: Review on the Integration of Federated Split Learning with TinyML in the Internet of Vehicles

    Meenakshi Aggarwal1, Vikas Khullar2,*, Nitin Goyal3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-31, 2026, DOI:10.32604/cmc.2025.072673 - 09 December 2025
    (This article belongs to the Special Issue: Integrating Split Learning with Tiny Models for Advanced Edge Computing Applications in the Internet of Vehicles)
    Abstract The Internet of Vehicles, or IoV, is expected to lessen pollution, ease traffic, and increase road safety. IoV entities’ interconnectedness, however, raises the possibility of cyberattacks, which can have detrimental effects. IoV systems typically send massive volumes of raw data to central servers, which may raise privacy issues. Additionally, model training on IoV devices with limited resources normally leads to slower training times and reduced service quality. We discuss a privacy-preserving Federated Split Learning with Tiny Machine Learning (TinyML) approach, which operates on IoV edge devices without sharing sensitive raw data. Specifically, we focus on… More >

  • Open Access

    ARTICLE

    A Study on Improving the Accuracy of Semantic Segmentation for Autonomous Driving

    Bin Zhang*, Zhancheng Xu

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-12, 2026, DOI:10.32604/cmc.2025.069979 - 09 December 2025
    (This article belongs to the Special Issue: Deep Learning: Emerging Trends, Applications and Research Challenges for Image Recognition)
    Abstract This study aimed to enhance the performance of semantic segmentation for autonomous driving by improving the 2DPASS model. Two novel improvements were proposed and implemented in this paper: dynamically adjusting the loss function ratio and integrating an attention mechanism (CBAM). First, the loss function weights were adjusted dynamically. The grid search method is used for deciding the best ratio of 7:3. It gives greater emphasis to the cross-entropy loss, which resulted in better segmentation performance. Second, CBAM was applied at different layers of the 2D encoder. Heatmap analysis revealed that introducing it after the second… More >

  • Open Access

    ARTICLE

    Machine Learning Based Uncertain Free Vibration Analysis of Hybrid Composite Plates

    Bindi Saurabh Thakkar1, Pradeep Kumar Karsh2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-22, 2026, DOI:10.32604/cmc.2025.072839 - 09 December 2025
    Abstract This study investigates the uncertain dynamic characterization of hybrid composite plates by employing advanced machine-assisted finite element methodologies. Hybrid composites, widely used in aerospace, automotive, and structural applications, often face variability in material properties, geometric configurations, and manufacturing processes, leading to uncertainty in their dynamic response. To address this, three surrogate-based machine learning approaches like radial basis function (RBF), multivariate adaptive regression splines (MARS), and polynomial neural networks (PNN) are integrated with a finite element framework to efficiently capture the stochastic behavior of these plates. The research focuses on predicting the first three natural frequencies… More >

  • Open Access

    ARTICLE

    Atomistic Simulation Study on Spall Failure and Damage Evolution in Single-Crystalline Ta at Elevated Temperatures

    Yuntian Wang1,2, Taohua Liang1,2, Yuan Zhou1,2, Weimei Shi1,2, Lijuan Huang1,2, Yuzhu Guo3,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-26, 2026, DOI:10.32604/cmc.2025.071624 - 09 December 2025
    Abstract This investigation utilizes non-equilibrium molecular dynamics (NEMD) simulations to explore shock-induced spallation in single-crystal tantalum across shock velocities of 0.75–4 km/s and initial temperatures from 300 to 2000 K. Two spallation modes emerge: classical spallation for shock velocity below 1.5 km/s, with solid-state reversible Body-Centered Cubic (BCC) to Face-Centered Cubic (FCC) or Hexagonal Close-Packed (HCP) phase transformations and discrete void nucleation-coalescence; micro-spallation for shock velocity above 3.0 km/s, featuring complete shock-induced melting and fragmentation, with a transitional regime (2.0–2.5 km/s) of partial melting. Spall strength decreases monotonically with temperature due to thermal softening. Elevated temperatures More >

  • Open Access

    ARTICLE

    Numerical Simulation of Damage Behavior in Graphene-Reinforced Aluminum Matrix Composite Armatures under Multi-Physical Field Coupling

    Junwen Huo, Haicheng Liang, Weiye Dong, Xiaoming Du*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.073285 - 09 December 2025
    Abstract With the rapid advancement of electromagnetic launch technology, enhancing the structural stability and thermal resistance of armatures has become essential for improving the overall efficiency and reliability of railgun systems. Traditional aluminum alloy armatures often suffer from severe ablation, deformation, and uneven current distribution under high pulsed currents, which limit their performance and service life. To address these challenges, this study employs the Johnson–Cook constitutive model and the finite element method to develop armature models of aluminum matrix composites with varying heterogeneous graphene volume fractions. The temperature, stress, and strain of the armatures during operation… More >

  • Open Access

    ARTICLE

    Porosity-Impact Strength Relationship in Material Extrusion: Insights from MicroCT, and Computational Image Analysis

    Jia Yan Lim1,2, Siti Madiha Muhammad Amir3, Roslan Yahya3, Marta Peña Fernández2, Tze Chuen Yap1,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.070707 - 09 December 2025
    (This article belongs to the Special Issue: Design, Optimisation and Applications of Additive Manufacturing Technologies)
    Abstract Additive Manufacturing, also known as 3D printing, has transformed conventional manufacturing by building objects layer by layer, with material extrusion or fused deposition modeling standing out as particularly popular. However, due to its manufacturing process and thermal nature, internal voids and pores are formed within the thermoplastic materials being fabricated, potentially leading to a decrease in mechanical properties. This paper discussed the effect of printing parameters on the porosity and the mechanical properties of the 3D printed polylactic acid (PLA) through micro-computed tomography (microCT), computational image analysis, and Charpy impact testing. The results for both… More >

  • Open Access

    ARTICLE

    Optimization of Aluminum Alloy Formation Process for Selective Laser Melting Using a Differential Evolution-Framed JAYA Algorithm

    Siwen Xu1, Hanning Chen2, Rui Ni1, Maowei He2, Zhaodi Ge3, Xiaodan Liang2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-25, 2026, DOI:10.32604/cmc.2025.071398 - 09 December 2025
    Abstract Selective Laser Melting (SLM), an advanced metal additive manufacturing technology, offers high precision and personalized customization advantages. However, selecting reasonable SLM parameters is challenging due to complex relationships. This study proposes a method for identifying the optimal process window by combining the simulation model with an optimization algorithm. JAYA is guided by the principle of preferential behavior towards best solutions and avoidance of worst ones, but it is prone to premature convergence thus leading to insufficient global search. To overcome limitations, this research proposes a Differential Evolution-framed JAYA algorithm (DEJAYA). DEJAYA incorporates four key enhancements More >

  • Open Access

    ARTICLE

    Structural and Helix Reversal Defects of Carbon Nanosprings: A Molecular Dynamics Study

    Alexander V. Savin1,2, Elena A. Korznikova3,4, Sergey V. Dmitriev5,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.072786 - 09 December 2025
    Abstract Due to their chiral structure, carbon nanosprings possess unique properties that are promising for nanotechnology applications. The structural transformations of carbon nanosprings in the form of spiral macromolecules derived from planar coronene and kekulene molecules (graphene helicoids and spiral nanoribbons) are analyzed using molecular dynamics simulations. The interatomic interactions are described by a force field including valence bonds, bond angles, torsional and dihedral angles, as well as van der Waals interactions. While the tension/compression of such nanosprings has been analyzed in the literature, this study investigates other modes of deformation, including bending and twisting. Depending… More >

  • Open Access

    ARTICLE

    A Micromechanics-Based Softening Hyperelastic Model for Granular Materials: Multiscale Insights into Strain Localization and Softening

    Chenxi Xiu1,2,*, Xihua Chu2, Ao Mei1, Liangfei Gong1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-39, 2026, DOI:10.32604/cmc.2025.073193 - 09 December 2025
    Abstract Granular materials exhibit complex macroscopic mechanical behaviors closely related to their micro-scale microstructural features. Traditional macroscopic phenomenological elasto-plastic models, however, usually have complex formulations and lack explicit relations to these microstructural features. To avoid these limitations, this study proposes a micromechanics-based softening hyperelastic model for granular materials, integrating softening hyperelasticity with microstructural insights to capture strain softening, critical state, and strain localization behaviors. The model has two key advantages: (1) a clear conceptualization, straightforward formulation, and ease of numerical implementation (via Abaqus UMAT subroutine in this study); (2) explicit incorporation of micro-scale features (e.g., contact… More >

  • Open Access

    ARTICLE

    Advanced AI-Driven Cybersecurity Solutions: Intelligent Threat Detection, Explainability, and Adversarial Resilience

    Kirubavathi Ganapathiyappan1,*, Kiruba Marimuthu Eswaramoorthy1, Abi Thangamuthu Shanthamani1, Aksaya Venugopal1, Asita Pon Bhavya Iyyappan1, Thilaga Manickam1, Ateeq Ur Rehman2,*, Habib Hamam3,4,5,6

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-31, 2026, DOI:10.32604/cmc.2025.070067 - 09 December 2025
    (This article belongs to the Special Issue: Advances in Machine Learning and Artificial Intelligence for Intrusion Detection Systems)
    Abstract The growing use of Portable Document Format (PDF) files across various sectors such as education, government, and business has inadvertently turned them into a major target for cyberattacks. Cybercriminals take advantage of the inherent flexibility and layered structure of PDFs to inject malicious content, often employing advanced obfuscation techniques to evade detection by traditional signature-based security systems. These conventional methods are no longer adequate, especially against sophisticated threats like zero-day exploits and polymorphic malware. In response to these challenges, this study introduces a machine learning-based detection framework specifically designed to combat such threats. Central to… More >

  • Open Access

    ARTICLE

    Validation of Contextual Model Principles through Rotated Images Interpretation

    Illia Khurtin*, Mukesh Prasad

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-15, 2026, DOI:10.32604/cmc.2025.067481 - 09 December 2025
    Abstract The field of artificial intelligence has advanced significantly in recent years, but achieving a human-like or Artificial General Intelligence (AGI) remains a theoretical challenge. One hypothesis suggests that a key issue is the formalisation of extracting meaning from information. Meaning emerges through a three-stage interpretative process, where the spectrum of possible interpretations is collapsed into a singular outcome by a particular context. However, this approach currently lacks practical grounding. In this research, we developed a model based on contexts, which applies interpretation principles to the visual information to address this gap. The field of computer… More >

  • Open Access

    ARTICLE

    Detection Method for Bolt Loosening of Fan Base through Bayesian Learning with Small Dataset: A Real-World Application

    Zhongyun Tang1,2,3, Hanyi Xu2, Haiyang Hu1,3,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-29, 2026, DOI:10.32604/cmc.2025.070616 - 09 December 2025
    Abstract With the deep integration of smart manufacturing and IoT technologies, higher demands are placed on the intelligence and real-time performance of industrial equipment fault detection. For industrial fans, base bolt loosening faults are difficult to identify through conventional spectrum analysis, and the extreme scarcity of fault data leads to limited training datasets, making traditional deep learning methods inaccurate in fault identification and incapable of detecting loosening severity. This paper employs Bayesian Learning by training on a small fault dataset collected from the actual operation of axial-flow fans in a factory to obtain posterior distribution. This More >

  • Open Access

    ARTICLE

    AT-Net: A Semi-Supervised Framework for Asparagus Pathogenic Spore Detection under Complex Backgrounds

    Jiajun Sun, Shunshun Ji, Chao Zhang*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.068668 - 09 December 2025
    Abstract Asparagus stem blight is a devastating crop disease, and the early detection of its pathogenic spores is essential for effective disease control and prevention. However, spore detection is still hindered by complex backgrounds, small target sizes, and high annotation costs, which limit its practical application and widespread adoption. To address these issues, a semi-supervised spore detection framework is proposed for use under complex background conditions. Firstly, a difficulty perception scoring function is designed to quantify the detection difficulty of each image region. For regions with higher difficulty scores, a masking strategy is applied, while the… More >

  • Open Access

    ARTICLE

    Zero-Shot Vision-Based Robust 3D Map Reconstruction and Obstacle Detection in Geometry-Deficient Room-Scale Environments

    Taehoon Kim, Sehun Lee, Junho Ahn*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-30, 2026, DOI:10.32604/cmc.2025.071597 - 09 December 2025
    Abstract As large, room-scale environments become increasingly common, their spatial complexity increases due to variable, unstructured elements. Consequently, demand for room-scale service robots is surging, yet most technologies remain corridor-centric, and autonomous navigation in expansive rooms becomes unstable even around static obstacles. Existing approaches face several structural limitations. These include the labor-intensive requirement for large-scale object annotation and continual retraining, as well as the vulnerability of vanishing point or line-based methods when geometric cues are insufficient. In addition, the high cost of LiDAR and 3D perception errors caused by limited wall cues and dense interior clutter… More >

  • Open Access

    ARTICLE

    A Mix Location Privacy Preservation Method Based on Differential Privacy with Clustering

    Fang Liu*, Xianghui Meng, Jiachen Li, Sibo Guo

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-21, 2026, DOI:10.32604/cmc.2025.069243 - 09 December 2025
    (This article belongs to the Special Issue: Differential Privacy: Techniques, Challenges, and Applications)
    Abstract With the popularization of smart devices, Location-Based Services (LBS) greatly facilitates users’ life, but at the same time brings the risk of users’ location privacy leakage. Existing location privacy protection methods are deficient, failing to reasonably allocate the privacy budget for non-outlier location points and ignoring the critical location information that may be contained in the outlier points, leading to decreased data availability and privacy exposure problems. To address these problems, this paper proposes a Mix Location Privacy Preservation Method Based on Differential Privacy with Clustering (MLDP). The method first utilizes the DBSCAN clustering algorithm… More >

  • Open Access

    ARTICLE

    Smart Assessment of Flight Quality for Trajectory Planning in Internet of Flying Things

    Weiping Zeng1, Xiangping Bryce Zhai1,2,3,*, Cheng Sun1, Liusha Jiang1,2, Yicong Du3, Xuefeng Yan1,3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-15, 2026, DOI:10.32604/cmc.2025.070777 - 09 December 2025
    Abstract With the expanding applications of unmanned aerial vehicles (UAVs), precise flight evaluation has emerged as a critical enabler for efficient path planning, directly impacting operational performance and safety. Traditional path planning algorithms typically combine Dubins curves with local optimization to minimize trajectory length under 3D spatial constraints. However, these methods often overlook the correlation between pilot control quality and UAV flight dynamics, limiting their adaptability in complex scenarios. In this paper, we propose an intelligent flight evaluation model specifically designed to enhance multi-waypoint trajectory optimization algorithms. Our model leverages a decision tree to integrate attitude More >

  • Open Access

    ARTICLE

    A Parallelized Grey Wolf Optimizer-Based Fuzzy C-Means for Fast and Accurate MRI Segmentation on GPU

    Mohammed Debakla1,*, Ali Mezaghrani1, Khalifa Djemal2, Imane Zouaneb1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-21, 2026, DOI:10.32604/cmc.2025.071927 - 09 December 2025
    (This article belongs to the Special Issue: Advanced Bio-Inspired Optimization Algorithms and Applications)
    Abstract Magnetic Resonance Imaging (MRI) has a pivotal role in medical image analysis, for its ability in supporting disease detection and diagnosis. Fuzzy C-Means (FCM) clustering is widely used for MRI segmentation due to its ability to handle image uncertainty. However, the latter still has countless limitations, including sensitivity to initialization, susceptibility to local optima, and high computational cost. To address these limitations, this study integrates Grey Wolf Optimization (GWO) with FCM to enhance cluster center selection, improving segmentation accuracy and robustness. Moreover, to further refine optimization, Fuzzy Entropy Clustering was utilized for its distinctive features… More >

  • Open Access

    ARTICLE

    A Super-Resolution Generative Adversarial Network for Remote Sensing Images Based on Improved Residual Module and Attention Mechanism

    Yifan Zhang1, Yong Gan2,*, Mengke Tang1, Xinxin Gan3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.068880 - 09 December 2025
    (This article belongs to the Special Issue: Advances in Deep Learning and Neural Networks: Architectures, Applications, and Challenges)
    Abstract High-resolution remote sensing imagery is essential for critical applications such as precision agriculture, urban management planning, and military reconnaissance. Although significant progress has been made in single-image super-resolution (SISR) using generative adversarial networks (GANs), existing approaches still face challenges in recovering high-frequency details, effectively utilizing features, maintaining structural integrity, and ensuring training stability—particularly when dealing with the complex textures characteristic of remote sensing imagery. To address these limitations, this paper proposes the Improved Residual Module and Attention Mechanism Network (IRMANet), a novel architecture specifically designed for remote sensing image reconstruction. IRMANet builds upon the Super-Resolution… More >

  • Open Access

    ARTICLE

    Industrial EdgeSign: NAS-Optimized Real-Time Hand Gesture Recognition for Operator Communication in Smart Factories

    Meixi Chu1, Xinyu Jiang1,*, Yushu Tao2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.071533 - 09 December 2025
    (This article belongs to the Special Issue: Intelligent Computation and Large Machine Learning Models for Edge Intelligence in industrial Internet of Things)
    Abstract Industrial operators need reliable communication in high-noise, safety-critical environments where speech or touch input is often impractical. Existing gesture systems either miss real-time deadlines on resource-constrained hardware or lose accuracy under occlusion, vibration, and lighting changes. We introduce Industrial EdgeSign, a dual-path framework that combines hardware-aware neural architecture search (NAS) with large multimodal model (LMM) guided semantics to deliver robust, low-latency gesture recognition on edge devices. The searched model uses a truncated ResNet50 front end, a dimensional-reduction network that preserves spatiotemporal structure for tubelet-based attention, and localized Transformer layers tuned for on-device inference. To reduce… More >

  • Open Access

    ARTICLE

    Adaptive Path-Planning for Autonomous Robots: A UCH-Enhanced Q-Learning Approach

    Wei Liu1,*, Ruiyang Wang1, Guangwei Liu2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.070328 - 09 December 2025
    (This article belongs to the Special Issue: Reinforcement Learning: Algorithms, Challenges, and Applications)
    Abstract Q-learning is a classical reinforcement learning method with broad applicability. It can respond effectively to environmental changes and provide flexible strategies, making it suitable for solving robot path-planning problems. However, Q-learning faces challenges in search and update efficiency. To address these issues, we propose an improved Q-learning (IQL) algorithm. We use an enhanced Ant Colony Optimization (ACO) algorithm to optimize Q-table initialization. We also introduce the UCH mechanism to refine the reward function and overcome the exploration dilemma. The IQL algorithm is extensively tested in three grid environments of different scales. The results validate the… More >

  • Open Access

    ARTICLE

    Lightweight Airborne Vision Abnormal Behavior Detection Algorithm Based on Dual-Path Feature Optimization

    Baixuan Han1, Yueping Peng1,*, Zecong Ye2, Hexiang Hao1, Xuekai Zhang1, Wei Tang1, Wenchao Kang1, Qilong Li1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-31, 2026, DOI:10.32604/cmc.2025.071071 - 09 December 2025
    (This article belongs to the Special Issue: Advances in Deep Learning and Neural Networks: Architectures, Applications, and Challenges)
    Abstract Aiming at the problem of imbalance between detection accuracy and algorithm model lightweight in UAV aerial image target detection algorithm, a lightweight multi-category abnormal behavior detection algorithm based on improved YOLOv11n is designed. By integrating multi-head grouped self-attention mechanism and Partial-Conv, a two-way feature grouping fusion module (DFPF) was designed, which carried out effective channel segmentation and fusion strategies to reduce redundant calculations and memory access. C3K2 module was improved, and then unstructured pruning and feature distillation technology were used. The algorithm model is lightweight, and the feature extraction ability for airborne visual abnormal behavior… More >

  • Open Access

    ARTICLE

    Research on Integrating Deep Learning-Based Vehicle Brand and Model Recognition into a Police Intelligence Analysis Platform

    Shih-Lin Lin*, Cheng-Wei Li

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071915 - 09 December 2025
    (This article belongs to the Special Issue: Intelligent Vehicles and Emerging Automotive Technologies: Integrating AI, IoT, and Computing in Next-Generation in Electric Vehicles)
    Abstract This study focuses on developing a deep learning model capable of recognizing vehicle brands and models, integrated with a law enforcement intelligence platform to overcome the limitations of existing license plate recognition techniques—particularly in handling counterfeit, obscured, or absent plates. The research first entailed collecting, annotating, and classifying images of various vehicle models, leveraging image processing and feature extraction methodologies to train the model on Microsoft Custom Vision. Experimental results indicate that, for most brands and models, the system achieves stable and relatively high performance in Precision, Recall, and Average Precision (AP). Furthermore, simulated tests… More >

  • Open Access

    ARTICLE

    FishTracker: An Efficient Multi-Object Tracking Algorithm for Fish Monitoring in a RAS Environment

    Yuqiang Wu1,2, Zhao Ji1, Guanqi You1, Zihan Zhang1, Chaoping Lu3, Huanliang Xu1, Zhaoyu Zhai1,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-22, 2026, DOI:10.32604/cmc.2025.070414 - 09 December 2025
    Abstract Understanding fish movement trajectories in aquaculture is essential for practical applications, such as disease warning, feeding optimization, and breeding management. These trajectories reveal key information about the fish’s behavior, health, and environmental adaptability. However, when multi-object tracking (MOT) algorithms are applied to the high-density aquaculture environment, occlusion and overlapping among fish may result in missed detections, false detections, and identity switching problems, which limit the tracking accuracy. To address these issues, this paper proposes FishTracker, a MOT algorithm, by utilizing a Tracking-by-Detection framework. First, the neck part of the YOLOv8 model is enhanced by introducing… More >

  • Open Access

    ARTICLE

    Learning Time Embedding for Temporal Knowledge Graph Completion

    Jinglu Chen1, Mengpan Chen2, Wenhao Zhang2,*, Huihui Ren2, Daniel Dajun Zeng1,2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-25, 2026, DOI:10.32604/cmc.2025.069331 - 09 December 2025
    Abstract Temporal knowledge graph completion (TKGC), which merges temporal information into traditional static knowledge graph completion (SKGC), has garnered increasing attention recently. Among numerous emerging approaches, translation-based embedding models constitute a prominent approach in TKGC research. However, existing translation-based methods typically incorporate timestamps into entities or relations, rather than utilizing them independently. This practice fails to fully exploit the rich semantics inherent in temporal information, thereby weakening the expressive capability of models. To address this limitation, we propose embedding timestamps, like entities and relations, in one or more dedicated semantic spaces. After projecting all embeddings into… More >

  • Open Access

    ARTICLE

    MFCCT: A Robust Spectral-Temporal Fusion Method with DeepConvLSTM for Human Activity Recognition

    Rashid Jahangir1,*, Nazik Alturki2, Muhammad Asif Nauman3, Faiqa Hanif1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071574 - 09 December 2025
    Abstract Human activity recognition (HAR) is a method to predict human activities from sensor signals using machine learning (ML) techniques. HAR systems have several applications in various domains, including medicine, surveillance, behavioral monitoring, and posture analysis. Extraction of suitable information from sensor data is an important part of the HAR process to recognize activities accurately. Several research studies on HAR have utilized Mel frequency cepstral coefficients (MFCCs) because of their effectiveness in capturing the periodic pattern of sensor signals. However, existing MFCC-based approaches often fail to capture sufficient temporal variability, which limits their ability to distinguish… More >

  • Open Access

    ARTICLE

    Searchable Attribute-Based Encryption with Multi-Keyword Fuzzy Matching for Cloud-Based IoT

    He Duan, Shi Zhang*, Dayu Li

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-25, 2026, DOI:10.32604/cmc.2025.069628 - 09 December 2025
    Abstract Internet of Things (IoT) interconnects devices via network protocols to enable intelligent sensing and control. Resource-constrained IoT devices rely on cloud servers for data storage and processing. However, this cloud-assisted architecture faces two critical challenges: the untrusted cloud services and the separation of data ownership from control. Although Attribute-based Searchable Encryption (ABSE) provides fine-grained access control and keyword search over encrypted data, existing schemes lack of error tolerance in exact multi-keyword matching. In this paper, we proposed an attribute-based multi-keyword fuzzy searchable encryption with forward ciphertext search (FCS-ABMSE) scheme that avoids computationally expensive bilinear pairing… More >

  • Open Access

    ARTICLE

    Enhanced Image Captioning via Integrated Wavelet Convolution and MobileNet V3 Architecture

    Mo Hou1,2,3,#,*, Bin Xu4,#, Wen Shang1,2,3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.071282 - 09 December 2025
    Abstract Image captioning, a pivotal research area at the intersection of image understanding, artificial intelligence, and linguistics, aims to generate natural language descriptions for images. This paper proposes an efficient image captioning model named Mob-IMWTC, which integrates improved wavelet convolution (IMWTC) with an enhanced MobileNet V3 architecture. The enhanced MobileNet V3 integrates a transformer encoder as its encoding module and a transformer decoder as its decoding module. This innovative neural network significantly reduces the memory space required and model training time, while maintaining a high level of accuracy in generating image descriptions. IMWTC facilitates large receptive… More >

  • Open Access

    ARTICLE

    Enhancing Ransomware Resilience in Cloud-Based HR Systems through Moving Target Defense

    Jay Barach*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.071705 - 09 December 2025
    Abstract Human Resource (HR) operations increasingly rely on cloud-based platforms that provide hiring, payroll, employee management, and compliance services. These systems, typically built on multi-tenant microservice architectures, offer scalability and efficiency but also expand the attack surface for adversaries. Ransomware has emerged as a leading threat in this domain, capable of halting workflows and exposing sensitive employee records. Traditional defenses such as static hardening and signature-based detection often fail to address the dynamic requirements of HR Software as a Service (SaaS), where continuous availability and privacy compliance are critical. This paper presents a Moving Target Defense… More >

  • Open Access

    ARTICLE

    A Generative Steganography Based on Attraction-Matrix-Driven Gomoku Games

    Yi Cao1, Kuo Zhang1, Chengsheng Yuan2,*, Linglong Zhu1, Wentao Ge2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-24, 2026, DOI:10.32604/cmc.2025.070158 - 09 December 2025
    Abstract Generative steganography uses generative stego images to transmit secret message. It also effectively defends against statistical steganalysis. However, most existing methods focus primarily on matching the feature distribution of training data, often neglecting the sequential continuity between moves in the game. This oversight can result in unnatural patterns that deviate from real user behavior, thereby reducing the security of the hidden communication. To address this issue, we design a Gomoku agent based on the AlphaZero algorithm. The model engages in self-play to generate a sequence of plausible moves. These moves form the basis of the… More >

  • Open Access

    ARTICLE

    Bi-STAT+: An Enhanced Bidirectional Spatio-Temporal Adaptive Transformer for Urban Traffic Flow Forecasting

    Yali Cao1, Weijian Hu1,2, Lingfang Li1,*, Minchao Li1, Meng Xu2, Ke Han2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.069373 - 09 December 2025
    Abstract Traffic flow prediction constitutes a fundamental component of Intelligent Transportation Systems (ITS), playing a pivotal role in mitigating congestion, enhancing route optimization, and improving the utilization efficiency of roadway infrastructure. However, existing methods struggle in complex traffic scenarios due to static spatio-temporal embedding, restricted multi-scale temporal modeling, and weak representation of local spatial interactions. This study proposes Bi-STAT+, an enhanced bidirectional spatio-temporal attention framework to address existing limitations through three principal contributions: (1) an adaptive spatio-temporal embedding module that dynamically adjusts embeddings to capture complex traffic variations; (2) frequency-domain analysis in the temporal dimension for… More >

  • Open Access

    ARTICLE

    Enhancing Lightweight Mango Disease Detection Model Performance through a Combined Attention Module

    Wen-Tsai Sung1, Indra Griha Tofik Isa2,3, Sung-Jung Hsiao4,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-31, 2026, DOI:10.32604/cmc.2025.070922 - 09 December 2025
    Abstract Mango is a plant with high economic value in the agricultural industry; thus, it is necessary to maximize the productivity performance of the mango plant, which can be done by implementing artificial intelligence. In this study, a lightweight object detection model will be developed that can detect mango plant conditions based on disease potential, so that it becomes an early detection warning system that has an impact on increasing agricultural productivity. The proposed lightweight model integrates YOLOv7-Tiny and the proposed modules, namely the C2S module. The C2S module consists of three sub-modules such as the… More >

  • Open Access

    ARTICLE

    Dynamic Integration of Q-Learning and A-APF for Efficient Path Planning in Complex Underground Mining Environments

    Chang Su, Liangliang Zhao*, Dongbing Xiang

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-24, 2026, DOI:10.32604/cmc.2025.071319 - 09 December 2025
    Abstract To address low learning efficiency and inadequate path safety in spraying robot navigation within complex obstacle-rich environments—with dense, dynamic, unpredictable obstacles challenging conventional methods—this paper proposes a hybrid algorithm integrating Q-learning and improved A*-Artificial Potential Field (A-APF). Centered on the Q-learning framework, the algorithm leverages safety-oriented guidance generated by A-APF and employs a dynamic coordination mechanism that adaptively balances exploration and exploitation. The proposed system comprises four core modules: (1) an environment modeling module that constructs grid-based obstacle maps; (2) an A-APF module that combines heuristic search from A* algorithm with repulsive force strategies from… More >

  • Open Access

    ARTICLE

    Lightweight Hash-Based Post-Quantum Signature Scheme for Industrial Internet of Things

    Chia-Hui Liu*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-18, 2026, DOI:10.32604/cmc.2025.072887 - 09 December 2025
    (This article belongs to the Special Issue: Advances in Secure Computing: Post-Quantum Security, Multimedia Encryption, and Intelligent Threat Defence)
    Abstract The Industrial Internet of Things (IIoT) has emerged as a cornerstone of Industry 4.0, enabling large-scale automation and data-driven decision-making across factories, supply chains, and critical infrastructures. However, the massive interconnection of resource-constrained devices also amplifies the risks of eavesdropping, data tampering, and device impersonation. While digital signatures are indispensable for ensuring authenticity and non-repudiation, conventional schemes such as RSA and ECC are vulnerable to quantum algorithms, jeopardizing long-term trust in IIoT deployments. This study proposes a lightweight, stateless, hash-based signature scheme that achieves post-quantum security while addressing the stringent efficiency demands of IIoT. The… More >

  • Open Access

    ARTICLE

    A Joint Optimization Model for Device Selection and Power Allocation under Dynamic Uncertain Environments

    Bohui Li1, Bin Wang1, Linjie Wu1, Xingjuan Cai1,*, Maoqing Zhang2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-28, 2026, DOI:10.32604/cmc.2025.070592 - 09 December 2025
    (This article belongs to the Special Issue: Advanced Edge Computing and Artificial Intelligence in Smart Environment)
    Abstract Federated Learning (FL) provides an effective framework for efficient processing in vehicular edge computing. However, the dynamic and uncertain communication environment, along with the performance variations of vehicular devices, affect the distribution and uploading processes of model parameters. In FL-assisted Internet of Vehicles (IoV) scenarios, challenges such as data heterogeneity, limited device resources, and unstable communication environments become increasingly prominent. These issues necessitate intelligent vehicle selection schemes to enhance training efficiency. Given this context, we propose a new scenario involving FL-assisted IoV systems under dynamic and uncertain communication conditions, and develop a dynamic interval multi-objective More >

  • Open Access

    ARTICLE

    FD-YOLO: An Attention-Augmented Lightweight Network for Real-Time Industrial Fabric Defect Detection

    Shaobo Kang, Mingzhi Yang*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.071488 - 09 December 2025
    Abstract Fabric defect detection plays a vital role in ensuring textile quality. However, traditional manual inspection methods are often inefficient and inaccurate. To overcome these limitations, we propose FD-YOLO, an enhanced lightweight detection model based on the YOLOv11n framework. The proposed model introduces the Bi-level Routing Attention (BRAttention) mechanism to enhance defect feature extraction, enabling more detailed feature representation. It proposes Deep Progressive Cross-Scale Fusion Neck (DPCSFNeck) to better capture small-scale defects and incorporates a Multi-Scale Dilated Residual (MSDR) module to strengthen multi-scale feature representation. Furthermore, a Shared Detail-Enhanced Lightweight Head (SDELHead) is employed to reduce More >

  • Open Access

    ARTICLE

    Hesitation Analysis with Kullback Leibler Divergence and Its Calculation on Temporal Data

    Sanghyuk Lee1, Eunmi Lee2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-17, 2026, DOI:10.32604/cmc.2025.070504 - 09 December 2025
    Abstract Hesitation analysis plays a crucial role in decision-making processes by capturing the intermediary position between supportive and opposing information. This study introduces a refined approach to addressing uncertainty in decision-making, employing existing measures used in decision problems. Building on information theory, the Kullback–Leibler (KL) divergence is extended to incorporate additional insights, specifically by applying temporal data, as illustrated by time series data from two datasets (e.g., affirmative and dissent information). Cumulative hesitation provides quantifiable insights into the decision-making process. Accordingly, a modified KL divergence, which incorporates historical trends, is proposed, enabling dynamic updates using conditional More >

  • Open Access

    ARTICLE

    Dynamic Adaptive Weighting of Effectiveness Assessment Indicators: Integrating G1, CRITIC and PIVW

    Longyue Li1, Guoqing Zhang1, Bo Cao1, Shuqi Wang2, Ye Tian1,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-26, 2026, DOI:10.32604/cmc.2025.070622 - 09 December 2025
    Abstract Modern battlefields exhibit high dynamism, where traditional static weighting methods in combat effectiveness assessment fail to capture real-time changes in indicator values, leading to limited assessment accuracy—especially critical in scenarios like sudden electronic warfare or degraded command, where static weights cannot reflect the operational value decay or surge of key indicators. To address this issue, this study proposes a dynamic adaptive weighting method for evaluation indicators based on G1-CRITIC-PIVW. First, the G1 (Sequential Relationship Analysis Method) subjective weighting method—translates expert knowledge into indicator importance rankings—leverages expert knowledge to quantify the relative importance of indicators via… More >

  • Open Access

    ARTICLE

    Machine Learning-Based GPS Spoofing Detection and Mitigation for UAVs

    Charlotte Olivia Namagembe, Mohamad Ibrahim, Md Arafatur Rahman*, Prashant Pillai

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.070316 - 09 December 2025
    Abstract The rapid proliferation of commercial unmanned aerial vehicles (UAVs) has revolutionized fields such as precision agriculture and disaster response. However, their heavy reliance on GPS navigation leaves them highly vulnerable to spoofing attacks, with potentially severe consequences. To mitigate this threat, we present a machine learning-driven framework for real-time GPS spoofing detection, designed with a balance of detection accuracy and computational efficiency. Our work is distinguished by the creation of a comprehensive dataset of 10,000 instances that integrates both simulated and real-world data, enabling robust and generalizable model development. A comprehensive evaluation of multiple classification More >

  • Open Access

    ARTICLE

    MFF-YOLO: A Target Detection Algorithm for UAV Aerial Photography

    Dike Chen1,2,3, Zhiyong Qin2, Ji Zhang2, Hongyuan Wang1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-17, 2026, DOI:10.32604/cmc.2025.072494 - 09 December 2025
    Abstract To address the challenges of small target detection and significant scale variations in unmanned aerial vehicle (UAV) aerial imagery, which often lead to missed and false detections, we propose Multi-scale Feature Fusion YOLO (MFF-YOLO), an enhanced algorithm based on YOLOv8s. Our approach introduces a Multi-scale Feature Fusion Strategy (MFFS), comprising the Multiple Features C2f (MFC) module and the Scale Sequence Feature Fusion (SSFF) module, to improve feature integration across different network levels. This enables more effective capture of fine-grained details and sequential multi-scale features. Furthermore, we incorporate Inner-CIoU, an improved loss function that uses auxiliary More >

  • Open Access

    ARTICLE

    BAID: A Lightweight Super-Resolution Network with Binary Attention-Guided Frequency-Aware Information Distillation

    Jiajia Liu1,*, Junyi Lin2, Wenxiang Dong2, Xuan Zhao2, Jianhua Liu2, Huiru Li3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.071397 - 09 December 2025
    (This article belongs to the Special Issue: Deep Learning: Emerging Trends, Applications and Research Challenges for Image Recognition)
    Abstract Single Image Super-Resolution (SISR) seeks to reconstruct high-resolution (HR) images from low-resolution (LR) inputs, thereby enhancing visual fidelity and the perception of fine details. While Transformer-based models—such as SwinIR, Restormer, and HAT—have recently achieved impressive results in super-resolution tasks by capturing global contextual information, these methods often suffer from substantial computational and memory overhead, which limits their deployment on resource-constrained edge devices. To address these challenges, we propose a novel lightweight super-resolution network, termed Binary Attention-Guided Information Distillation (BAID), which integrates frequency-aware modeling with a binary attention mechanism to significantly reduce computational complexity and parameter… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Approach Using Vision Transformer and U-Net for Flood Segmentation

    Cyreneo Dofitas1, Yong-Woon Kim2, Yung-Cheol Byun3,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.069374 - 09 December 2025
    Abstract Recent advances in deep learning have significantly improved flood detection and segmentation from aerial and satellite imagery. However, conventional convolutional neural networks (CNNs) often struggle in complex flood scenarios involving reflections, occlusions, or indistinct boundaries due to limited contextual modeling. To address these challenges, we propose a hybrid flood segmentation framework that integrates a Vision Transformer (ViT) encoder with a U-Net decoder, enhanced by a novel Flood-Aware Refinement Block (FARB). The FARB module improves boundary delineation and suppresses noise by combining residual smoothing with spatial-channel attention mechanisms. We evaluate our model on a UAV-acquired flood More >

  • Open Access

    ARTICLE

    A Multimodal Sentiment Analysis Method Based on Multi-Granularity Guided Fusion

    Zilin Zhang1, Yan Liu1,*, Jia Liu2, Senbao Hou3, Yuping Zhang1, Chenyuan Wang1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-14, 2026, DOI:10.32604/cmc.2025.072286 - 09 December 2025
    Abstract With the growing demand for more comprehensive and nuanced sentiment understanding, Multimodal Sentiment Analysis (MSA) has gained significant traction in recent years and continues to attract widespread attention in the academic community. Despite notable advances, existing approaches still face critical challenges in both information modeling and modality fusion. On one hand, many current methods rely heavily on encoders to extract global features from each modality, which limits their ability to capture latent fine-grained emotional cues within modalities. On the other hand, prevailing fusion strategies often lack mechanisms to model semantic discrepancies across modalities and to… More >

  • Open Access

    ARTICLE

    State Space Guided Spatio-Temporal Network for Efficient Long-Term Traffic Prediction

    Guangyu Huo, Chang Su, Xiaoyu Zhang*, Xiaohui Cui, Lizhong Zhang

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.072147 - 09 December 2025
    (This article belongs to the Special Issue: Advancing Network Intelligence: Communication, Sensing and Computation)
    Abstract Long-term traffic flow prediction is a crucial component of intelligent transportation systems within intelligent networks, requiring predictive models that balance accuracy with low-latency and lightweight computation to optimize traffic management and enhance urban mobility and sustainability. However, traditional predictive models struggle to capture long-term temporal dependencies and are computationally intensive, limiting their practicality in real-time. Moreover, many approaches overlook the periodic characteristics inherent in traffic data, further impacting performance. To address these challenges, we introduce ST-MambaGCN, a State-Space-Based Spatio-Temporal Graph Convolution Network. Unlike conventional models, ST-MambaGCN replaces the temporal attention layer with Mamba, a state-space More >

  • Open Access

    ARTICLE

    Log-Based Anomaly Detection of System Logs Using Graph Neural Network

    Eman Alsalmi, Abeer Alhuzali*, Areej Alhothali

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071012 - 09 December 2025
    (This article belongs to the Special Issue: Advances in Deep Learning and Neural Networks: Architectures, Applications, and Challenges)
    Abstract Log anomaly detection is essential for maintaining the reliability and security of large-scale networked systems. Most traditional techniques rely on log parsing in the reprocessing stage and utilize handcrafted features that limit their adaptability across various systems. In this study, we propose a hybrid model, BertGCN, that integrates BERT-based contextual embedding with Graph Convolutional Networks (GCNs) to identify anomalies in raw system logs, thereby eliminating the need for log parsing. The BERT module captures semantic representations of log messages, while the GCN models the structural relationships among log entries through a text-based graph. This combination More >

  • Open Access

    ARTICLE

    MWaOA: A Bio-Inspired Metaheuristic Algorithm for Resource Allocation in Internet of Things

    Rekha Phadke1, Abdul Lateef Haroon Phulara Shaik2, Dayanidhi Mohapatra3, Doaa Sami Khafaga4,*, Eman Abdullah Aldakheel4, N. Sathyanarayana5

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-26, 2026, DOI:10.32604/cmc.2025.067564 - 09 December 2025
    Abstract Recently, the Internet of Things (IoT) technology has been utilized in a wide range of services and applications which significantly transforms digital ecosystems through seamless interconnectivity between various smart devices. Furthermore, the IoT plays a key role in multiple domains, including industrial automation, smart homes, and intelligent transportation systems. However, an increasing number of connected devices presents significant challenges related to efficient resource allocation and system responsiveness. To address these issue, this research proposes a Modified Walrus Optimization Algorithm (MWaOA) for effective resource management in smart IoT systems. In the proposed MWaOA, a crowding process… More >

  • Open Access

    ARTICLE

    A Multi-Objective Adaptive Car-Following Framework for Autonomous Connected Vehicles with Deep Reinforcement Learning

    Abu Tayab1,*, Yanwen Li1, Ahmad Syed2, Ghanshyam G. Tejani3,4,*, Doaa Sami Khafaga5, El-Sayed M. El-kenawy6, Amel Ali Alhussan7, Marwa M. Eid8,9

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-27, 2026, DOI:10.32604/cmc.2025.070583 - 09 December 2025
    (This article belongs to the Special Issue: Advances in Vehicular Ad-Hoc Networks (VANETs) for Intelligent Transportation Systems)
    Abstract Autonomous connected vehicles (ACV) involve advanced control strategies to effectively balance safety, efficiency, energy consumption, and passenger comfort. This research introduces a deep reinforcement learning (DRL)-based car-following (CF) framework employing the Deep Deterministic Policy Gradient (DDPG) algorithm, which integrates a multi-objective reward function that balances the four goals while maintaining safe policy learning. Utilizing real-world driving data from the highD dataset, the proposed model learns adaptive speed control policies suitable for dynamic traffic scenarios. The performance of the DRL-based model is evaluated against a traditional model predictive control-adaptive cruise control (MPC-ACC) controller. Results show that the… More >

  • Open Access

    ARTICLE

    Error Analysis of Geomagnetic Field Reconstruction Model Using Negative Learning for Seismic Anomaly Detection

    Nur Syaiful Afrizal1, Khairul Adib Yusof1,2,*, Lokman Hakim Muhamad1, Nurul Shazana Abdul Hamid2,3, Mardina Abdullah2,4, Mohd Amiruddin Abd Rahman1, Syamsiah Mashohor5, Masashi Hayakawa6,7

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-16, 2026, DOI:10.32604/cmc.2025.066421 - 09 December 2025
    (This article belongs to the Special Issue: Advances in Pattern Recognition Applications)
    Abstract Detecting geomagnetic anomalies preceding earthquakes is a challenging yet promising area of research that has gained increasing attention in recent years. This study introduces a novel reconstruction-based modeling approach enhanced by negative learning, employing a Bidirectional Long Short-Term Memory (BiLSTM) network explicitly trained to accurately reconstruct non-seismic geomagnetic signals while intentionally amplifying reconstruction errors for seismic signals. By penalizing the model for accurately reconstructing seismic anomalies, the negative learning approach effectively magnifies the differences between normal and anomalous data. This strategic differentiation enhances the sensitivity of the BiLSTM network, enabling improved detection of subtle geomagnetic More >

  • Open Access

    ARTICLE

    Model Construction for Complex and Heterogeneous Data of Urban Road Traffic Congestion

    Jianchun Wen1, Minghao Zhu1,*, Bo Gao2, Zhaojian Liu1, Xuehan Li3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-17, 2026, DOI:10.32604/cmc.2025.069671 - 09 December 2025
    Abstract Urban traffic generates massive and diverse data, yet most systems remain fragmented. Current approaches to congestion management suffer from weak data consistency and poor scalability. This study addresses this gap by proposing the Urban Traffic Congestion Unified Metadata Model (UTC-UMM). The goal is to provide a standardized and extensible framework for describing, extracting, and storing multisource traffic data in smart cities. The model defines a two-tier specification that organizes nine core traffic resource classes. It employs an eXtensible Markup Language (XML) Schema that connects general elements with resource-specific elements. This design ensures both syntactic and… More >

  • Open Access

    ARTICLE

    Beyond Accuracy: Evaluating and Explaining the Capability Boundaries of Large Language Models in Syntax-Preserving Code Translation

    Yaxin Zhao1, Qi Han2, Hui Shu2, Yan Guang2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-24, 2026, DOI:10.32604/cmc.2025.070511 - 09 December 2025
    (This article belongs to the Special Issue: AI-Powered Software Engineering)
    Abstract Large Language Models (LLMs) are increasingly applied in the field of code translation. However, existing evaluation methodologies suffer from two major limitations: (1) the high overlap between test data and pretraining corpora, which introduces significant bias in performance evaluation; and (2) mainstream metrics focus primarily on surface-level accuracy, failing to uncover the underlying factors that constrain model capabilities. To address these issues, this paper presents TCode (Translation-Oriented Code Evaluation benchmark)—a complexity-controllable, contamination-free benchmark dataset for code translation—alongside a dedicated static feature sensitivity evaluation framework. The dataset is carefully designed to control complexity along multiple dimensions—including syntactic… More >

  • Open Access

    ARTICLE

    MultiAgent-CoT: A Multi-Agent Chain-of-Thought Reasoning Model for Robust Multimodal Dialogue Understanding

    Ans D. Alghamdi*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-35, 2026, DOI:10.32604/cmc.2025.071210 - 09 December 2025
    (This article belongs to the Special Issue: Artificial Intelligence in Visual and Audio Signal Processing)
    Abstract Multimodal dialogue systems often fail to maintain coherent reasoning over extended conversations and suffer from hallucination due to limited context modeling capabilities. Current approaches struggle with cross-modal alignment, temporal consistency, and robust handling of noisy or incomplete inputs across multiple modalities. We propose MultiAgent-Chain of Thought (CoT), a novel multi-agent chain-of-thought reasoning framework where specialized agents for text, vision, and speech modalities collaboratively construct shared reasoning traces through inter-agent message passing and consensus voting mechanisms. Our architecture incorporates self-reflection modules, conflict resolution protocols, and dynamic rationale alignment to enhance consistency, factual accuracy, and user engagement. More >

  • Open Access

    ARTICLE

    Research on Vehicle Joint Radar Communication Resource Optimization Method Based on GNN-DRL

    Zeyu Chen1, Jian Sun2,*, Zhengda Huan1, Ziyi Zhang1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-17, 2026, DOI:10.32604/cmc.2025.071182 - 09 December 2025
    Abstract To address the issues of poor adaptability in resource allocation and low multi-agent cooperation efficiency in Joint Radar and Communication (JRC) systems under dynamic environments, an intelligent optimization framework integrating Deep Reinforcement Learning (DRL) and Graph Neural Network (GNN) is proposed. This framework models resource allocation as a Partially Observable Markov Game (POMG), designs a weighted reward function to balance radar and communication efficiencies, adopts the Multi-Agent Proximal Policy Optimization (MAPPO) framework, and integrates Graph Convolutional Networks (GCN) and Graph Sample and Aggregate (GraphSAGE) to optimize information interaction. Simulations show that, compared with traditional methods More >

  • Open Access

    ARTICLE

    IoT-Driven Pollution Detection System for Indoor and Outdoor Environments

    Fatima Khan1, Amna Khan1, Tariq Ali2, Tariq Shahzad3, Tehseen Mazhar4,*, Sunawar Khan5, Muhammad Adnan Khan6,*, Habib Hamam7,8,9,10

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-27, 2026, DOI:10.32604/cmc.2025.068228 - 09 December 2025
    Abstract The rise in noise and air pollution poses severe risks to human health and the environment. Industrial and vehicular emissions release harmful pollutants such as CO2, SO2, CO, CH4, and noise, leading to significant environmental degradation. Monitoring and analyzing pollutant concentrations in real-time is crucial for mitigating these risks. However, existing systems often lack the capacity to monitor both indoor and outdoor environments effectively.This study presents a low-cost, IoT-based pollution detection system that integrates gas sensors (MQ-135 and MQ-4), a noise sensor (LM393), and a humidity sensor (DHT-22), all connected to a Node MCU (ESP8266) microcontroller. The… More >

  • Open Access

    ARTICLE

    Smart Contract Vulnerability Detection Based on Symbolic Execution and Graph Neural Networks

    Haoxin Sun1, Xiao Yu1,*, Jiale Li1, Yitong Xu1, Jie Yu1, Huanhuan Li1, Yuanzhang Li2, Yu-An Tan2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-15, 2026, DOI:10.32604/cmc.2025.070930 - 09 December 2025
    Abstract Since the advent of smart contracts, security vulnerabilities have remained a persistent challenge, compromsing both the reliability of contract execution and the overall stability of the virtual currency market. Consequently, the academic community has devoted increasing attention to these security risks. However, conventional approaches to vulnerability detection frequently exhibit limited accuracy. To address this limitation, the present study introduces a novel vulnerability detection framework called GNNSE that integrates symbolic execution with graph neural networks (GNNs). The proposed method first constructs semantic graphs to comprehensively capture the control flow and data flow dependencies within smart contracts. More >

  • Open Access

    ARTICLE

    APPLE_YOLO: Apple Detection Method Based on Channel Pruning and Knowledge Distillation in Complicated Environments

    Xin Ma1,2, Jin Lei3,4,*, Chenying Pei4, Chunming Wu4

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-17, 2026, DOI:10.32604/cmc.2025.069353 - 09 December 2025
    (This article belongs to the Special Issue: Advances in Object Detection: Methods and Applications)
    Abstract This study proposes a lightweight apple detection method employing cascaded knowledge distillation (KD) to address the critical challenges of excessive parameters and high deployment costs in existing models. We introduce a Lightweight Feature Pyramid Network (LFPN) integrated with Lightweight Downsampling Convolutions (LDConv) to substantially reduce model complexity without compromising accuracy. A Lightweight Multi-channel Attention (LMCA) mechanism is incorporated between the backbone and neck networks to effectively suppress complex background interference in orchard environments. Furthermore, model size is compressed via Group_Slim channel pruning combined with a cascaded distillation strategy. Experimental results demonstrate that the proposed model More >

  • Open Access

    ARTICLE

    X-MalNet: A CNN-Based Malware Detection Model with Visual and Structural Interpretability

    Kirubavathi Ganapathiyappan1, Heba G. Mohamed2, Abhishek Yadav1, Guru Akshya Chinnaswamy1, Ateeq Ur Rehman3,*, Habib Hamam4,5,6,7

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-18, 2026, DOI:10.32604/cmc.2025.069951 - 09 December 2025
    (This article belongs to the Special Issue: Advances in Machine Learning and Artificial Intelligence for Intrusion Detection Systems)
    Abstract The escalating complexity of modern malware continues to undermine the effectiveness of traditional signature-based detection techniques, which are often unable to adapt to rapidly evolving attack patterns. To address these challenges, this study proposes X-MalNet, a lightweight Convolutional Neural Network (CNN) framework designed for static malware classification through image-based representations of binary executables. By converting malware binaries into grayscale images, the model extracts distinctive structural and texture-level features that signify malicious intent, thereby eliminating the dependence on manual feature engineering or dynamic behavioral analysis. Built upon a modified AlexNet architecture, X-MalNet employs transfer learning to… More >

  • Open Access

    ARTICLE

    ResghostNet: Boosting GhostNet with Residual Connections and Adaptive-SE Blocks

    Yuang Chen1,2, Yong Li1,*, Fang Lin1,2, Shuhan Lv1,2, Jiaze Jiang1,2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-18, 2026, DOI:10.32604/cmc.2025.070990 - 09 December 2025
    Abstract Aiming at the problem of potential information noise introduced during the generation of ghost feature maps in GhostNet, this paper proposes a novel lightweight neural network model called ResghostNet. This model constructs the Resghost Module by combining residual connections and Adaptive-SE Blocks, which enhances the quality of generated feature maps through direct propagation of original input information and selection of important channels before cheap operations. Specifically, ResghostNet introduces residual connections on the basis of the Ghost Module to optimize the information flow, and designs a weight self-attention mechanism combined with SE blocks to enhance feature More >

  • Open Access

    ARTICLE

    Dynamic Knowledge Graph Reasoning Based on Distributed Representation Learning

    Qiuru Fu1, Shumao Zhang1, Shuang Zhou1, Jie Xu1,*, Changming Zhao2, Shanchao Li3, Du Xu1,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.070493 - 09 December 2025
    Abstract Knowledge graphs often suffer from sparsity and incompleteness. Knowledge graph reasoning is an effective way to address these issues. Unlike static knowledge graph reasoning, which is invariant over time, dynamic knowledge graph reasoning is more challenging due to its temporal nature. In essence, within each time step in a dynamic knowledge graph, there exists structural dependencies among entities and relations, whereas between adjacent time steps, there exists temporal continuity. Based on these structural and temporal characteristics, we propose a model named “DKGR-DR” to learn distributed representations of entities and relations by combining recurrent neural networks More >

  • Open Access

    ARTICLE

    Mitigating the Dynamic Load Altering Attack on Load Frequency Control with Network Parameter Regulation

    Yunhao Yu1, Boda Zhang1, Meiling Dizha1, Ruibin Wen1, Fuhua Luo1, Xiang Guo1, Zhenyong Zhang2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.070577 - 09 December 2025
    Abstract Load frequency control (LFC) is a critical function to balance the power consumption and generation. The grid frequency is a crucial indicator for maintaining balance. However, the widely used information and communication infrastructure for LFC increases the risk of being attacked by malicious actors. The dynamic load altering attack (DLAA) is a typical attack that can destabilize the power system, causing the grid frequency to deviate from its nominal value. Therefore, in this paper, we mathematically analyze the impact of DLAA on the stability of the grid frequency and propose the network parameter regulation (NPR)… More >

  • Open Access

    ARTICLE

    Optimizing Resource Allocation in Blockchain Networks Using Neural Genetic Algorithm

    Malvinder Singh Bali1, Weiwei Jiang2,*, Saurav Verma3, Kanwalpreet Kour4, Ashwini Rao3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.070866 - 09 December 2025
    Abstract In recent years, Blockchain Technology has become a paradigm shift, providing Transparent, Secure, and Decentralized platforms for diverse applications, ranging from Cryptocurrency to supply chain management. Nevertheless, the optimization of blockchain networks remains a critical challenge due to persistent issues such as latency, scalability, and energy consumption. This study proposes an innovative approach to Blockchain network optimization, drawing inspiration from principles of biological evolution and natural selection through evolutionary algorithms. Specifically, we explore the application of genetic algorithms, particle swarm optimization, and related evolutionary techniques to enhance the performance of blockchain networks. The proposed methodologies More >

  • Open Access

    ARTICLE

    An Improved Blockchain-Based Cloud Auditing Scheme Using Dynamic Aggregate Signatures

    Haibo Lei1,2, Xu An Wang1,*, Wenhao Liu1, Lingling Wu1, Chao Zhang1, Weiwei Jiang3, Xiao Zou4

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-31, 2026, DOI:10.32604/cmc.2025.070030 - 09 December 2025
    (This article belongs to the Special Issue: Challenges and Innovations in Multimedia Encryption and Information Security)
    Abstract With the rapid expansion of the Internet of Things (IoT), user data has experienced exponential growth, leading to increasing concerns about the security and integrity of data stored in the cloud. Traditional schemes relying on untrusted third-party auditors suffer from both security and efficiency issues, while existing decentralized blockchain-based auditing solutions still face shortcomings in correctness and security. This paper proposes an improved blockchain-based cloud auditing scheme, with the following core contributions: Identifying critical logical contradictions in the original scheme, thereby establishing the foundation for the correctness of cloud auditing; Designing an enhanced mechanism that… More >

  • Open Access

    ARTICLE

    HCF-MFGB: Hybrid Collaborative Filtering Based on Matrix Factorization and Gradient Boosting

    Salahudin Robo1,2, Triyanna Widiyaningtyas1,*, Wahyu Sakti Gunawan Irianto1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.073011 - 09 December 2025
    Abstract Recommendation systems are an integral and indispensable part of every digital platform, as they can suggest content or items to users based on their respective needs. Collaborative filtering is a technique often used in various studies, which produces recommendations by analyzing similarities between users and items based on their behavior. Although often used, traditional collaborative filtering techniques still face the main challenge of sparsity. Sparsity problems occur when the data in the system is sparse, meaning that only a portion of users provide feedback on some items, resulting in inaccurate recommendations generated by the system.… More >

  • Open Access

    ARTICLE

    PMCFusion: A Parallel Multi-Dimensional Complementary Network for Infrared and Visible Image Fusion

    Xu Tao1, Qiang Xiao2, Zhaoqi Jin2, Hao Li1,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-18, 2026, DOI:10.32604/cmc.2025.070790 - 09 December 2025
    Abstract Image fusion technology aims to generate a more informative single image by integrating complementary information from multi-modal images. Despite the significant progress of deep learning-based fusion methods, existing algorithms are often limited to single or dual-dimensional feature interactions, thus struggling to fully exploit the profound complementarity between multi-modal images. To address this, this paper proposes a parallel multi-dimensional complementary fusion network, termed PMCFusion, for the task of infrared and visible image fusion. The core of this method is its unique parallel three-branch fusion module, PTFM, which pioneers the parallel synergistic perception and efficient integration of… More >

  • Open Access

    ARTICLE

    CLF-YOLOv8: Lightweight Multi-Scale Fusion with Focal Geometric Loss for Real-Time Night Maritime Detection

    Zhonghao Wang1,2, Xin Liu1,2,*, Changhua Yue3, Haiwen Yuan4

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.071813 - 09 December 2025
    Abstract To address critical challenges in nighttime ship detection—high small-target missed detection (over 20%), insufficient lightweighting, and limited generalization due to scarce, low-quality datasets—this study proposes a systematic solution. First, a high-quality Night-Ships dataset is constructed via CycleGAN-based day-night transfer, combined with a dual-threshold cleaning strategy (Laplacian variance sharpness filtering and brightness-color deviation screening). Second, a Cross-stage Lightweight Fusion-You Only Look Once version 8 (CLF-YOLOv8) is proposed with key improvements: the Neck network is reconstructed by replacing Cross Stage Partial (CSP) structure with the Cross Stage Partial Multi-Scale Convolutional Block (CSP-MSCB) and integrating Bidirectional Feature Pyramid More >

  • Open Access

    ARTICLE

    Research on Automated Game QA Reporting Based on Natural Language Captions

    Jun Myeong Kim, Jang Young Jeong, Shin Jin Kang, Beomjoo Seo*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-16, 2026, DOI:10.32604/cmc.2025.071084 - 09 December 2025
    (This article belongs to the Special Issue: AI-Powered Software Engineering)
    Abstract Game Quality Assurance (QA) currently relies heavily on manual testing, a process that is both costly and time-consuming. Traditional script- and log-based automation tools are limited in their ability to detect unpredictable visual bugs, especially those that are context-dependent or graphical in nature. As a result, many issues go unnoticed during manual QA, which reduces overall game quality, degrades the user experience, and creates inefficiencies throughout the development cycle. This study proposes two approaches to address these challenges. The first leverages a Large Language Model (LLM) to directly analyze gameplay videos, detect visual bugs, and… More >

  • Open Access

    ARTICLE

    Cognitive Erasure-Coded Data Update and Repair for Mitigating I/O Overhead

    Bing Wei, Ming Zhong, Qian Chen, Yi Wu*, Yubin Li

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069910 - 09 December 2025
    Abstract In erasure-coded storage systems, updating data requires parity maintenance, which often leads to significant I/O amplification due to “write-after-read” operations. Furthermore, scattered parity placement increases disk seek overhead during repair, resulting in degraded system performance. To address these challenges, this paper proposes a Cognitive Update and Repair Method (CURM) that leverages machine learning to classify files into write-only, read-only, and read-write categories, enabling tailored update and repair strategies. For write-only and read-write files, CURM employs a data-difference mechanism combined with fine-grained I/O scheduling to minimize redundant read operations and mitigate I/O amplification. For read-write files,… More >

  • Open Access

    ARTICLE

    Improving Real-Time Animal Detection Using Group Sparsity in YOLOv8: A Solution for Animal-Toy Differentiation

    Zia Ur Rehman1, Ahmad Syed2,*, Abu Tayab3, Ghanshyam G. Tejani4,5,*, Doaa Sami Khafaga6, El-Sayed M. El-kenawy7,8

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-25, 2026, DOI:10.32604/cmc.2025.070310 - 09 December 2025
    (This article belongs to the Special Issue: Advances in Image Recognition: Innovations, Applications, and Future Directions)
    Abstract Object detection, a major challenge in computer vision and pattern recognition, plays a significant part in many applications, crossing artificial intelligence, face recognition, and autonomous driving. It involves focusing on identifying the detection, localization, and categorization of targets in images. A particularly important emerging task is distinguishing real animals from toy replicas in real-time, mostly for smart camera systems in both urban and natural environments. However, that difficult task is affected by factors such as showing angle, occlusion, light intensity, variations, and texture differences. To tackle these challenges, this paper recommends Group Sparse YOLOv8 (You… More >

  • Open Access

    ARTICLE

    A Cloud-Based Distributed System for Story Visualization Using Stable Diffusion

    Chuang-Chieh Lin1, Yung-Shen Huang2, Shih-Yeh Chen2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.072890 - 09 December 2025
    (This article belongs to the Special Issue: Omnipresent AI in the Cloud Era Reshaping Distributed Computation and Adaptive Systems for Modern Applications)
    Abstract With the rapid development of generative artificial intelligence (GenAI), the task of story visualization, which transforms natural language narratives into coherent and consistent image sequences, has attracted growing research attention. However, existing methods still face limitations in balancing multi-frame character consistency and generation efficiency, which restricts their feasibility for large-scale practical applications. To address this issue, this study proposes a modular cloud-based distributed system built on Stable Diffusion. By separating the character generation and story generation processes, and integrating multi-feature control techniques, a caching mechanism, and an asynchronous task queue architecture, the system enhances generation… More >

  • Open Access

    ARTICLE

    Lightweight Complex-Valued Neural Network for Indoor Positioning

    Le Wang1, Bing Xu1,*, Peng Liu2, En Yuan1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-14, 2026, DOI:10.32604/cmc.2025.070794 - 09 December 2025
    Abstract Deep learning has been recognized as an effective method for indoor positioning. However, most existing real-valued neural networks (RVNNs) treat the two constituent components of complex-valued channel state information (CSI) as real-valued inputs, potentially discarding useful information embedded in the original CSI. In addition, existing positioning models generally face the contradiction between computational complexity and positioning accuracy. To address these issues, we combine graph neural network (GNN) with complex-valued neural network (CVNN) to construct a lightweight indoor positioning model named CGNet. CGNet employs complex-valued convolution operation to directly process the original CSI data, fully exploiting… More >

  • Open Access

    ARTICLE

    Empowering Edge Computing: Public Edge as a Service for Performance and Cost Optimization

    Ateeqa Jalal1,*, Umar Farooq1,4,5, Ihsan Rabbi1,4, Afzal Badshah2, Aurangzeb Khan1,4, Muhammad Mansoor Alam3,4, Mazliham Mohd Su’ud4,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.068289 - 09 December 2025
    Abstract The exponential growth of Internet of Things (IoT) devices, autonomous systems, and digital services is generating massive volumes of big data, projected to exceed 291 zettabytes by 2027. Conventional cloud computing, despite its high processing and storage capacity, suffers from increased network latency, network congestion, and high operational costs, making it unsuitable for latency-sensitive applications. Edge computing addresses these issues by processing data near the source but faces scalability challenges and elevated Total Cost of Ownership (TCO). Hybrid solutions, such as fog computing, cloudlets, and Mobile Edge Computing (MEC), attempt to balance cost and performance;… More >

  • Open Access

    ARTICLE

    Overcoming Dynamic Connectivity in Internet of Vehicles: A DAG Lattice Blockchain with Reputation-Based Incentive

    Xiaodong Zhang1, Wenhan Hou2,*, Juanjuan Wang3, Leixiao Li1, Pengfei Yue1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.072384 - 09 December 2025
    Abstract Blockchain offers a promising solution to the security challenges faced by the Internet of Vehicles (IoV). However, due to the dynamic connectivity of IoV, blockchain based on a single-chain structure or Directed Acyclic Graph (DAG) structure often suffer from performance limitations. The DAG lattice structure is a novel blockchain model in which each node maintains its own account chain, and only the node itself is allowed to update it. This feature makes the DAG lattice structure particularly suitable for addressing the challenges in dynamically connected IoV environment. In this paper, we propose a blockchain architecture… More >

  • Open Access

    ARTICLE

    Toward Efficient Traffic-Sign Detection via SlimNeck and Coordinate-Attention Fusion in YOLO-SMM

    Hui Chen1, Mohammed A. H. Ali1,*, Bushroa Abd Razak1, Zhenya Wang2, Yusoff Nukman1, Shikai Zhang1, Zhiwei Huang1, Ligang Yao3, Mohammad Alkhedher4

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-26, 2026, DOI:10.32604/cmc.2025.067286 - 09 December 2025
    Abstract Accurate and real-time traffic-sign detection is a cornerstone of Advanced Driver-Assistance Systems (ADAS) and autonomous vehicles. However, existing one-stage detectors miss distant signs, and two-stage pipelines are impractical for embedded deployment. To address this issue, we present YOLO-SMM, a lightweight two-stage framework. This framework is designed to augment the YOLOv8 baseline with three targeted modules. (1) SlimNeck replaces PAN/FPN with a CSP-OSA/GSConv fusion block, reducing parameters and FLOPs without compromising multi-scale detail. (2) The MCA model introduces row- and column-aware weights to selectively amplify small sign regions in cluttered scenes. (3) MPDIoU augments CIoU loss… More >

  • Open Access

    ARTICLE

    Energy Efficiency and Total Mission Completion Time Tradeoff in Multiple UAVs-Mounted IRS-Assisted Data Collection System

    Hong Zhao, Hongbin Chen*, Zhihui Guo, Ling Zhan, Shichao Li

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-25, 2026, DOI:10.32604/cmc.2025.072776 - 09 December 2025
    (This article belongs to the Special Issue: Advancements in Mobile Computing for the Internet of Things: Architectures, Applications, and Challenges)
    Abstract UAV-mounted intelligent reflecting surface (IRS) helps address the line-of-sight (LoS) blockage between sensor nodes (SNs) and the fusion center (FC) in Internet of Things (IoT). This paper considers an IoT assisted by multiple UAVs-mounted IRS (U-IRS), where the data from ground SNs are transmitted to the FC. In practice, energy efficiency (EE) and mission completion time are crucial metrics for evaluating system performance and operational costs. Recognizing their importance during data collection, we formulate a multi-objective optimization problem to maximize EE and minimize total mission completion time simultaneously. To characterize this tradeoff while considering optimization… More >

  • Open Access

    ARTICLE

    An Improved Variant of Multi-Population Cooperative Constrained Multi-Objective Optimization (MCCMO) for Multi-Objective Optimization Problem

    Muhammad Waqar Khan1,*, Adnan Ahmed Siddiqui1, Syed Sajjad Hussain Rizvi2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-15, 2026, DOI:10.32604/cmc.2025.070858 - 09 December 2025
    (This article belongs to the Special Issue: Advancements in Evolutionary Optimization Approaches: Theory and Applications)
    Abstract The multi-objective optimization problems, especially in constrained environments such as power distribution planning, demand robust strategies for discovering effective solutions. This work presents the improved variant of the Multi-population Cooperative Constrained Multi-Objective Optimization (MCCMO) Algorithm, termed Adaptive Diversity Preservation (ADP). This enhancement is primarily focused on the improvement of constraint handling strategies, local search integration, hybrid selection approaches, and adaptive parameter control. The improved variant was experimented on with the RWMOP50 power distribution system planning benchmark. As per the findings, the improved variant outperformed the original MCCMO across the eleven performance metrics, particularly in terms… More >

  • Open Access

    ARTICLE

    Federated Dynamic Aggregation Selection Strategy-Based Multi-Receptive Field Fusion Classification Framework for Point Cloud Classification

    Yuchao Hou1,2, Biaobiao Bai3, Shuai Zhao3, Yue Wang3, Jie Wang3, Zijian Li4,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-30, 2026, DOI:10.32604/cmc.2025.069789 - 09 December 2025
    Abstract Recently, large-scale deep learning models have been increasingly adopted for point cloud classification. However, these methods typically require collecting extensive datasets from multiple clients, which may lead to privacy leaks. Federated learning provides an effective solution to data leakage by eliminating the need for data transmission, relying instead on the exchange of model parameters. However, the uneven distribution of client data can still affect the model’s ability to generalize effectively. To address these challenges, we propose a new framework for point cloud classification called Federated Dynamic Aggregation Selection Strategy-based Multi-Receptive Field Fusion Classification Framework (FDASS-MRFCF).… More >

  • Open Access

    ARTICLE

    A Dual-Detection Method for Cashew Ripeness and Anthrax Based on YOLOv11-NSDDil

    Ran Liu, Yawen Chen, Dong Yang*, Jingjing Yang*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.070734 - 09 December 2025
    (This article belongs to the Special Issue: Big Data and Artificial Intelligence in Control and Information System)
    Abstract In the field of smart agriculture, accurate and efficient object detection technology is crucial for automated crop management. A particularly challenging task in this domain is small object detection, such as the identification of immature fruits or early stage disease spots. These objects pose significant difficulties due to their small pixel coverage, limited feature information, substantial scale variations, and high susceptibility to complex background interference. These challenges frequently result in inadequate accuracy and robustness in current detection models. This study addresses two critical needs in the cashew cultivation industry—fruit maturity and anthracnose detection—by proposing an… More >

  • Open Access

    ARTICLE

    FENet: Underwater Image Enhancement via Frequency Domain Enhancement and Edge-Guided Refinement

    Xinwei Zhu, Jianxun Zhang*, Huan Zeng

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-25, 2026, DOI:10.32604/cmc.2025.068578 - 09 December 2025
    Abstract Underwater images often affect the effectiveness of underwater visual tasks due to problems such as light scattering, color distortion, and detail blurring, limiting their application performance. Existing underwater image enhancement methods, although they can improve the image quality to some extent, often lead to problems such as detail loss and edge blurring. To address these problems, we propose FENet, an efficient underwater image enhancement method. FENet first obtains three different scales of images by image downsampling and then transforms them into the frequency domain to extract the low-frequency and high-frequency spectra, respectively. Then, a distance… More >

  • Open Access

    ARTICLE

    Semi-Fragile Image Watermarking Using Quantization-Based DCT for Tamper Localization

    Agit Amrullah, Ferda Ernawan*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-16, 2026, DOI:10.32604/cmc.2025.069229 - 09 December 2025
    Abstract This paper proposes a tamper detection technique for semi-fragile watermarking using Quantization-based Discrete Cosine Transform (DCT) for tamper localization. In this study, the proposed embedding strategy is investigated by experimental tests over the diagonal order of the DCT coefficients. The cover image is divided into non-overlapping blocks of size 8 × 8 pixels. The DCT is applied to each block, and the coefficients are arranged using a zig-zag pattern within the block. In this study, the low-frequency coefficients are selected to examine the impact of the imperceptibility score and tamper detection accuracy. High accuracy of… More >

  • Open Access

    ARTICLE

    PIDINet-MC: Real-Time Multi-Class Edge Detection with PiDiNet

    Mingming Huang1, Yunfan Ye1,*, Zhiping Cai2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-17, 2026, DOI:10.32604/cmc.2025.072399 - 09 December 2025
    Abstract As a fundamental component in computer vision, edges can be categorized into four types based on discontinuities in reflectance, illumination, surface normal, or depth. While deep CNNs have significantly advanced generic edge detection, real-time multi-class semantic edge detection under resource constraints remains challenging. To address this, we propose a lightweight framework based on PiDiNet that enables fine-grained semantic edge detection. Our model simultaneously predicts background and four edge categories from full-resolution inputs, balancing accuracy and efficiency. Key contributions include: a multi-channel output structure expanding binary edge prediction to five classes, supported by a deep supervision More >

  • Open Access

    ARTICLE

    FeatherGuard: A Data-Driven Lightweight Error Protection Scheme for DNN Inference on Edge Devices

    Dong Hyun Lee1, Na Kyung Lee2, Young Seo Lee1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-17, 2026, DOI:10.32604/cmc.2025.069976 - 09 December 2025
    Abstract There has been an increasing emphasis on performing deep neural network (DNN) inference locally on edge devices due to challenges such as network congestion and security concerns. However, as DRAM process technology continues to scale down, the bit-flip errors in the memory of edge devices become more frequent, thereby leading to substantial DNN inference accuracy loss. Though several techniques have been proposed to alleviate the accuracy loss in edge environments, they require complex computations and additional parity bits for error correction, thus resulting in significant performance and storage overheads. In this paper, we propose FeatherGuard,… More >

  • Open Access

    ARTICLE

    A Virtual Probe Deployment Method Based on User Behavioral Feature Analysis

    Bing Zhang, Wenqi Shi*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.067470 - 09 December 2025
    (This article belongs to the Special Issue: Cyberspace Mapping and Anti-Mapping Techniques)
    Abstract To address the challenge of low survival rates and limited data collection efficiency in current virtual probe deployments, which results from anomaly detection mechanisms in location-based service (LBS) applications, this paper proposes a novel virtual probe deployment method based on user behavioral feature analysis. The core idea is to circumvent LBS anomaly detection by mimicking real-user behavior patterns. First, we design an automated data extraction algorithm that recognizes graphical user interface (GUI) elements to collect spatio-temporal behavior data. Then, by analyzing the automatically collected user data, we identify normal users’ spatio-temporal patterns and extract their… More >

  • Open Access

    ARTICLE

    Efficient Video Emotion Recognition via Multi-Scale Region-Aware Convolution and Temporal Interaction Sampling

    Xiaorui Zhang1,2,*, Chunlin Yuan3, Wei Sun4, Ting Wang5

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.071043 - 09 December 2025
    (This article belongs to the Special Issue: Advances in Deep Learning and Neural Networks: Architectures, Applications, and Challenges)
    Abstract Video emotion recognition is widely used due to its alignment with the temporal characteristics of human emotional expression, but existing models have significant shortcomings. On the one hand, Transformer multi-head self-attention modeling of global temporal dependency has problems of high computational overhead and feature similarity. On the other hand, fixed-size convolution kernels are often used, which have weak perception ability for emotional regions of different scales. Therefore, this paper proposes a video emotion recognition model that combines multi-scale region-aware convolution with temporal interactive sampling. In terms of space, multi-branch large-kernel stripe convolution is used to More >

  • Open Access

    ARTICLE

    A Hierarchical Attention Framework for Business Information Systems: Theoretical Foundation and Proof-of-Concept Implementation

    Sabina-Cristiana Necula*, Napoleon-Alexandru Sireteanu

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-34, 2026, DOI:10.32604/cmc.2025.070861 - 09 December 2025
    Abstract Modern business information systems face significant challenges in managing heterogeneous data sources, integrating disparate systems, and providing real-time decision support in complex enterprise environments. Contemporary enterprises typically operate 200+ interconnected systems, with research indicating that 52% of organizations manage three or more enterprise content management systems, creating information silos that reduce operational efficiency by up to 35%. While attention mechanisms have demonstrated remarkable success in natural language processing and computer vision, their systematic application to business information systems remains largely unexplored. This paper presents the theoretical foundation for a Hierarchical Attention-Based Business Information System (HABIS)… More >

  • Open Access

    ARTICLE

    Improving Person Recognition for Single-Person-in-Photos: Intimacy in Photo Collections

    Xiaoyi Duan, Tianqi Zou, Chenyang Wang, Yu Gu, Xiuying Li*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-24, 2026, DOI:10.32604/cmc.2025.070683 - 09 December 2025
    Abstract Person recognition in photo collections is a critical yet challenging task in computer vision. Previous studies have used social relationships within photo collections to address this issue. However, these methods often fail when performing single-person-in-photos recognition in photo collections, as they cannot rely on social connections for recognition. In this work, we discard social relationships and instead measure the relationships between photos to solve this problem. We designed a new model that includes a multi-parameter attention network for adaptively fusing visual features and a unified formula for measuring photo intimacy. This model effectively recognizes individuals More >

  • Open Access

    ARTICLE

    RetinexWT: Retinex-Based Low-Light Enhancement Method Combining Wavelet Transform

    Hongji Chen, Jianxun Zhang*, Tianze Yu, Yingzhu Zeng, Huan Zeng

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.067041 - 09 December 2025
    (This article belongs to the Special Issue: Computer Vision and Image Processing: Feature Selection, Image Enhancement and Recognition)
    Abstract Low-light image enhancement aims to improve the visibility of severely degraded images captured under insufficient illumination, alleviating the adverse effects of illumination degradation on image quality. Traditional Retinex-based approaches, inspired by human visual perception of brightness and color, decompose an image into illumination and reflectance components to restore fine details. However, their limited capacity for handling noise and complex lighting conditions often leads to distortions and artifacts in the enhanced results, particularly under extreme low-light scenarios. Although deep learning methods built upon Retinex theory have recently advanced the field, most still suffer from insufficient interpretability… More >

  • Open Access

    ARTICLE

    Classification of Job Offers into Job Positions Using NET and BERT Language Models

    Lino Gonzalez-Garcia*, Miguel-Angel Sicilia, Elena García-Barriocanal

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-15, 2026, DOI:10.32604/cmc.2025.070813 - 09 December 2025
    Abstract Classifying job offers into occupational categories is a fundamental task in human resource information systems, as it improves and streamlines indexing, search, and matching between openings and job seekers. Comprehensive occupational databases such as NET or ESCO provide detailed taxonomies of interrelated positions that can be leveraged to align the textual content of postings with occupational categories, thereby facilitating standardization, cross-system interoperability, and access to metadata for each occupation (e.g., tasks, knowledge, skills, and abilities). In this work, we explore the effectiveness of fine-tuning existing language models (LMs) to classify job offers with occupational descriptors… More >

  • Open Access

    ARTICLE

    An Attention-Based 6D Pose Estimation Network for Weakly Textured Industrial Parts

    Song Xu1,2,*, Liang Xuan1,2, Yifeng Li1,2, Qiang Zhang1,2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.070472 - 09 December 2025
    Abstract The 6D pose estimation of objects is of great significance for the intelligent assembly and sorting of industrial parts. In the industrial robot production scenarios, the 6D pose estimation of industrial parts mainly faces two challenges: one is the loss of information and interference caused by occlusion and stacking in the sorting scenario, the other is the difficulty of feature extraction due to the weak texture of industrial parts. To address the above problems, this paper proposes an attention-based pixel-level voting network for 6D pose estimation of weakly textured industrial parts, namely CB-PVNet. On the… More >

  • Open Access

    ARTICLE

    Multi-CNN Fusion Framework for Predictive Violence Detection in Animated Media

    Tahira Khalil1, Sadeeq Jan2,*, Rania M. Ghoniem3, Muhammad Imran Khan Khalil1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.072655 - 09 December 2025
    Abstract The contemporary era is characterized by rapid technological advancements, particularly in the fields of communication and multimedia. Digital media has significantly influenced the daily lives of individuals of all ages. One of the emerging domains in digital media is the creation of cartoons and animated videos. The accessibility of the internet has led to a surge in the consumption of cartoons among young children, presenting challenges in monitoring and controlling the content they view. The prevalence of cartoon videos containing potentially violent scenes has raised concerns regarding their impact, especially on young and impressionable minds.… More >

  • Open Access

    ARTICLE

    HDFPM: A Heterogeneous Disk Failure Prediction Method Based on Time Series Features

    Zhongrui Jing1, Hongzhang Yang1,*, Jiangpu Guo2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-25, 2026, DOI:10.32604/cmc.2025.067759 - 09 December 2025
    (This article belongs to the Special Issue: Signal Processing for Fault Diagnosis)
    Abstract Hard disk drives (HDDs) serve as the primary storage devices in modern data centers. Once a failure occurs, it often leads to severe data loss, significantly degrading the reliability of storage systems. Numerous studies have proposed machine learning-based HDD failure prediction models. However, the Self-Monitoring, Analysis, and Reporting Technology (SMART) attributes differ across HDD manufacturers. We define hard drives of the same brand and model as homogeneous HDD groups, and those from different brands or models as heterogeneous HDD groups. In practical engineering scenarios, a data center is often composed of a heterogeneous population of… More >

Copyright © 2025 The Author(s). Published by Tech Science Press.

Share Link