Special Issue "Plant Omics in Challenging Environment"

Submission Deadline: 01 March 2022 (closed)
Guest Editors
Dr. Khalid Rehman Hakeem, King Abdulaziz University, Saudi Arabia
Dr. Munir Ozturk, Ege University, Turkey
Dr. Peerzada Yasir Yousuf, Department of Higher Education, Jammu and Kashmir, India

Summary

The changing environment is one of the predominant stressors that negatively influence plant growth, development, quality, and productivity. This is a wide-ranging topic on which numerous studies have been conducted globally to comprehend the physiological, biochemical, and molecular dynamisms operative in plants under challenging conditions. Despite all these efforts, various adaptive mechanisms of plants under the challenging environment remain to be uncovered. Therefore, modern tools and methods for the identification and application of genes, RNAs, and proteins responsible for increased yield and desirable agronomical traits in plants under challenging environments are needed. In the past few decades, plant omics tools are used to understand the deeper molecular tolerance networks in plants in a challenging environment.

 

This special issue intends to integrate recent omics approaches such as phenomics, genomics, transcriptomics, proteomics, metabolomics, cytomics and interactomics, to make novel advancements in defining the molecular aspects of plant response to the challenging environmental conditions.



Keywords
Phenomics; Genomics; Proteomics; Transcriptomics; Metabolomics; Resistance; Regulations; Environment

Published Papers
  • Transcriptome Analysis and Morphological Changes in Response to Waterlogging in Iris pseudacorus
  • Abstract Iris pseudacorus is a widely cultivated and studied ornamental plant with a large biomass, strong adaptability and extensive management. Moreover, it has the ability to decontaminate and enrich heavy metals. However, few studies have been conducted on its submergence tolerance with little known about the molecular response of I. pseudacorus to flooding. Morphologically, I. pseudacorus had strong adaptability to waterlogging, the aerenchyma was gradually enlarged and adventitious roots developed between 0 and 14 d. The transcriptome data showed that the differentially expressed genes counts in plants flooded for 2 h, 4 h, 12 h and 24 h compared with the… More
  •   Views:150       Downloads:87        Download PDF

  • Genome-Wide Characterization of the Cellulose Synthase Gene Superfamily in Tea Plants (Camellia sinensis)
  • Abstract The cellulose synthase gene superfamily, including Cellulose synthase A (CesA) and cellulose synthase-like (Csl) gene families, is responsible for the synthesis of cellulose and hemicellulose, respectively. The CesA/Csl genes are vital for abiotic stress resistance and shoot tenderness regulation of tea plants (Camellia sinensis). However, the CesA/Csl gene family has not been extensively studied in tea plants. Here, we identified 53 CsCesA/Csl genes in tea plants. These genes were grouped into five subfamilies (CsCesA, CsCslB, CsCslD, CsCslE, CsCslG) based on the phylogenetic relationships with Arabidopsis and rice. The analysis of chromosome distribution, gene structure, protein domain and motif revealed that… More
  •   Views:121       Downloads:68        Download PDF

  • Identification of Suitable Reference Genes for qRT-PCR Normalization in Tilia miqueliana Maxim
  • Abstract Quantitative real-time polymerase chain reaction (qRT-PCR) is a rapid and effective approach toward detecting the expression patterns of target genes. The selection of a stable reference gene under specific test condition is essential for expressing levels of target genes accurately. Tilia miqueliana, considered endangered, is a prominent native ornamental and honey tree in East China. No study has evaluated the optimal endogenous reference gene for qRT-PCR analysis in T. miqueliana systematically. In this study, fifteen commonly used reference genes were selected as candidate genes, and the stabilities of their expressions were assessed using four algorithms (GeNorm, NormFiner, BestKeeper, and DeltaCt)… More
  •   Views:110       Downloads:60        Download PDF

  • Analysis of Seed Phenotypic and Metabolic Characteristics of Diploid and Tetraploid Tartary Buckwheat
  • Abstract Polyploid plants grow well, are stress tolerant, and are rich in nutrients and bioactive compounds. Thus, they are useful for improving crop quality and yield. In this study, we compared the seed characteristics and metabolite profiles of diploid and tetraploid tartary buckwheat, which was developed via an artificially induced chromosome doubling event. The length, width, area, and thousand-grain weight were greater for the tetraploid seeds than for the diploid seeds. However, the germination rate decreased for the tetraploid seeds. Additionally, there was a gap between the shell and kernel of the tetraploid seeds. Moreover, the water absorption rate was higher… More
  •   Views:165       Downloads:66        Download PDF

  • Comparative Analysis of the Complete Chloroplast Genome Sequences of Four Origin Plants of Lonicerae Flos (Lonicera; Caprifoliaceae)
  • Abstract Lonicerae Flos (LF) derived from the dried flower buds or opening flowers of four Lonicera plants (Lonicera macranthoides, L. hypoglauca, L. confusa, and L. fulvotnetosa), is a popular traditional Chinese medicine. Because the four origin plants are very similar in morphology, it is difficult to control the quality of LF in actual production. Over the past decade, many reports have pointed out the differences among them, including the botanical characteristics and active ingredients. However, there is still a lack of rapid methods that can be applied to the identification of the four origins. In this study, comparative analysis of the… More
  •   Views:418       Downloads:364        Download PDF

  • Comparative Transcriptome Analysis Reveals Different Mechanisms of Adaptation to Environment among Three Species of Saussurea DC.
  • Abstract Saussurea medusa, Saussurea hypsipeta and Saussurea obvallata are typical alpine snowline plants growing in the Qinghai-Tibet plateau. They are characterized by a specialized morphology. S. medusa and S. hypsipeta have very dense trichomes on whole plant, whereas S. obvallata has transparent bracts covered inflorescences. The different forms reflect their adaptation to cold environments. To investigate the different mechanisms of adaptation of these species to cold temperatures, transcriptome sequencing was performed in three species of Saussurea DC. A total of 116394 137237 and 113879 Unigenes were identified from S. medusa, S. hypsipeta and S. obvallata, respectively. Of these, 55909 (48.03%), 65519… More
  •   Views:363       Downloads:240        Download PDF

  • Molecular Basis of Unique Branching Phenotypes in Salvia splendens and the Role of PSY
  • Abstract The branching system of higher plants plays a very important role in plant morphogenesis, and the number of branches can directly affect crop yield and the ornamental value of plants. It is a complicated development process involving complex molecular mechanisms. The ‘Cailinghong’ variety of Salvia splendens is characterized by its great branching ability with the ability to grow into a spherical form naturally, without pinching. To gain insight into the molecular events during the branching development of S. splendens, suppressive subtractive hybridization (SSH) technology was used to screen differentially expressed genes between the erect plant type (strain 35) and the… More
  •   Views:416       Downloads:306        Download PDF


  • Identification of a Unique Germacrene A Oxidase from Xanthium strumarium
  • Abstract 8,12-sesquiterpene lactones (STLs) are an important class of natural products with unique pharmaceutical activities. For years the pathway leading to 8,12-STLs remains an enigma. Xanthium strumarium accumulates abundant 8,12-STLs, and xanthatin is a characteristic 8,12-STL in it. Xanthatin has been previously postulated to be derived from germacrene A, but the steps from germacrene A to xanthatin are unknown. As part of an effort to understand the xanthatin biosynthetic pathway. This study reports the characterization of a unique germacrene A oxidase (XsGAO) from X. strumarium. Unlike a classical GAO enzyme, which is known to catalyze a three-step oxidation of germarene A… More
  •   Views:419       Downloads:291       Cited by:1        Download PDF

  • Cloning and Characterization of EuGID1 in Eucommia ulmoides Oliver
  • Abstract Gibberellic acid controlled the key developmental processes of the life cycle of landing plants, and regulated the growth and development of plants. In this study, a novel gibberellin receptor gene EuGID1 was obtained from Eucommia ulmoides Oliver. The cDNA of EuGID1 was 1556 bp, and the open reading frame was 1029 bp, which encoded 343 amino acids. EuGID1 had the homology sequence with the hormone-sensitive lipase family. Amino acid sequence alignment confirmed EuGID1 protein had the highest homology with the GID1 protein of Manihot esculenta. EuGID1 was located in the nucleus and cell membrane and had expression in four plant organs. Overexpression… More
  •   Views:432       Downloads:310        Download PDF

  • Proteomic Analysis of Chrysanthemum Lateral Buds after Removing Apical Dominance Based on Label-Free Technology
  • Abstract Studying the genetic basis and regulatory mechanism of chrysanthemum lateral bud outgrowth is of great significance for reduction the production cost of cut chrysanthemum. To clarify the molecular basis of lateral bud elongation after removal of apical dominance in chrysanthemum, label-free quantification analysis was used to analyze the proteome changes after apical bud removal. Quantitative real-time PCR (qPCR) was used to analyze the changes in the expression of three plant hormone-related genes. A total of 440 differentially expressed proteins were successfully identified at three time points during the lateral bud elongation. The number of differentially expressed proteins in the three… More
  •   Views:735       Downloads:500        Download PDF

  • Identification of Genes Involved in Celastrol Biosynthesis by Comparative Transcriptome Analysis in Tripterygium wilfordii
  • Abstract Tripterygium wilfordii has been renowned mostly because of the anticancer effects of its root extracts, which is partly ascribed to the presence of celastrol, a pentacyclic triterpenoid, as one of the main active components. Celastrol also has recently been reported as an effective prodrug in the treatment of obesity. Despite the promising activities, the pathway leading to celastrol biosynthesis, especially cytochrome P450 (CYP) enzyme(s) that occur in its downstream steps, are largely unknown. This study conducted a comparative analysis of the T. wilfordii transcriptome derived from its root and leaf tissues. Differential gene expression analysis identified a number of root-specific… More
  •   Views:877       Downloads:583        Download PDF