Special Issue "Mycorrhizal Fungi and Sustainable Development of Agriculture"

Submission Deadline: 10 January 2021 (closed)
Guest Editors
Prof. Qiang-Sheng Wu, Yangtze University, China
Prof. Yue-Jun He, Guizhou University, China
Dr. AK Srivastava, ICAR-Central Citrus Research Institute, India
Prof. Ibrahim Ortas, University of Cukurova, Turkey
Assoc. Prof. Bo Shu, Yangtze University, China


Soil mycorrhizal fungi are one of the common groups of biological organisms with land’s plants such as forests, crops, and grasslands. Mycorrhizal fungi colonize plant roots to form mycorrhizal symbiosis, which regulates nutrient uptake of host plants along with exchange of plant’s carbohydrates.

In general, the mycorrhizal symbiotic relationship is direct and stable, which is conducive to the symbiotic survival and adaptation to the external natural environment. In recent years, with the change in global climate, all kinds of adverse environment have become more frequent, which seriously affects the sustainable development of agriculture.

A large number of studies have shown that symbiotic mycorrhizal fungi helped host plants to resist adverse environment through various morphological, physiological, biochemical and molecular mechanisms. This effect gives a broad space for the sustainable development of agriculture. However, many problems still need to be solved, such as the propagation of arbuscular mycorrhizal fungi, the analysis of resistance mechanism, the application and evaluation of arbuscular mycorrhizal fungi in farmland.

This special issue is proposed to explore the latest advances in the topic. The manuscripts are welcome to focus on the following topics:

1) Mycorrhizal fungi and plant growth of various plants;

2) Improvement of soil fertility after inoculation with mycorrhizal fungi;

3) Physiological mechanisms regarding mycorrhizal fungi-enhanced stress tolerance of host plants;

4) Molecular analysis of mycorrhizal fungi-enhanced stress tolerance of host plants;

5) Mycorrhizal fungi and ecological stability of agriculture and forestry;

6) Mycorrhizal fungal roles in nutrient absorption under nutrient stress conditions;

7) Combination of mycorrhizal fungi and other microorganisms into plants;

8) Mycorrhizal fungal application in farmland and orchards.

Arbuscular mycorrhiza; Ecological stability; Microbe; Mycorrhiza; Stress tolerance; Symbiosis

Published Papers

  • Pathways of Phosphorus Absorption and Early Signaling between the Mycorrhizal Fungi and Plants
  • Abstract

    This review highlights the key role that mycorrhizal fungi play in making phosphorus (Pi) more available to plants, including pathways of phosphorus absorption, phosphate transporters and plant-mycorrhizal fungus symbiosis, especially in conditions where the level of inorganic phosphorus (Pi) in the soil is low. Mycorrhizal fungi colonization involves a series of signaling where the plant root exudates strigolactones, while the mycorrhizal fungi release a mixture of chito-oligosaccharides and liposaccharides, that activate the symbiosis process through gene signaling pathways, and contact between the hyphae and the root. Once the symbiosis is established, the extraradical mycelium acts as an extension of the… More

  •   Views:1259       Downloads:932       Cited by:2        Download PDF

  • Mycorrhizas Affect Polyphyllin Accumulation of Paris polyphylla var. yunnanensis through Promoting PpSE Expression
  • Abstract Paris polyphylla var. yunnanensis is a traditional Chinese medicinal plant, in which polyphyllin as the main medicinal component is an important secondary metabolite with bioactivity. Arbuscular mycorrhizal fungi (AMF) have multiple positive effects on plants, while it is not clear whether AMF increase the content of medicinal components in medicinal plants. In this study, a total of nine AMF treatments were laid to analyze the mycorrhizal effect on polyphyllin accumulation and PpHMGR and PpSE expression of P. polyphylla var. yunnanensis. AMF increased the content of polyphyllin in the cultivated variety with low relation to the increase of inoculation intensity. Polyphyllin… More
  •   Views:778       Downloads:651       Cited by:4        Download PDF

  • Interaction between Earthworms and Arbuscular Mycorrhizal Fungi in Plants: A Review
  • Abstract Different kinds of soil animals and microorganisms inhabit the plant rhizosphere, which function closely to plant roots. Of them, arbuscular mycorrhizal fungi (AMF) and earthworms play a critical role in sustaining the soil-plant health. Earthworms and AMF belong to the soil community and are soil beneficial organisms at different trophic levels. Both of them improve soil fertility and structural development, collectively promoting plant growth and nutrient acquisition capacity. Earthworm activities redistribute mycorrhizal fungi spores and give diversified effects on root mycorrhizal fungal colonization. Dual inoculation with both earthworms and AMF strongly magnifies the response on plant growth through increased soil… More
  •   Views:1243       Downloads:933        Download PDF

  • Improved Tolerance of Three Saudi Pearl Millet Cultivars (Pennisetum spicatum) to Salt Stress by Mycorrhiza
  • Abstract Seeds of three Saudi pearl millet cultivars (Pennisetum spicatum) from three regions (Madinah, Khulais and Jaizan) were inoculated with arbuscular mycorrhizal fungus Glomus mosseae obtained from the Agriculture Research Center of Giza, Egypt to enhance their salt tolerance. Five different NaCl concentrations (0, 30, 60, 90, and 120 mM) were used for treating cultivars with and without mycorrhiza. Growth rates, chlorophyll content, chlorophyll fluorescence (Fv/Fm), proline content and gas exchange were measured to determine the effect of salinity on these cultivars. The results indicated that compared to cultivars without mycorrhiza, all cultivars with mycorrhiza had enhanced growth and physiological parameters… More
  •   Views:839       Downloads:632        Download PDF

  • Mycorrhizal Fungal Effects on Growth, Antioxidant Capacity, and Medicine Quality of Paris polyphylla var. yunnanensis
  • Abstract A field experiment was conducted to determine the effects of two commercial strains composed of mulple arbuscular mycorrhizal fungi (AMF) species on plant growth, antioxidant capacity, and medicine quality of Paris polyphylla var. yunnanensis in three subtropical soils from Wanzhou, Anshun and Baoshan in fields. The results showed that AMF inoculation enhanced the fungal colonization rate and activities of both succinate dehydrogenase and alkaline phosphatase, thereby, enhancing the mycorrhizal viability of P. polyphylla var. yunnanensis. The concentrations of photosynthetic pigments (chlorophyll a, b, a+b and carotenoids), soluble sugar, soluble protein and photosynthetic capacity were higher in AMF-inoculated plants than in… More
  •   Views:1196       Downloads:743        Download PDF

  • Interaction of Acaena elongata L. with Arbuscular Mycorrhizal Fungi under Phosphorus Limitation Conditions in a Temperate Forest
  • Abstract The aim of this study was to analyze the performance of Acaena elongata colonized by arbuscular mycorrhizal fungi (AMF) to different phosphorus (P) concentrations, as a measure of AMF dependency. A. elongata, is a species from soils where P availability is limited, such as temperate forests. Our research questions were: 1) How do different P concentrations affect the AMF association in Acaena elongata, and 2) How does the AMF association influence A. elongata’s growth under different P concentrations? A. elongata’s growth, P content in plant tissue, AMF colonization and dependency were measured under four P concentrations: control (0 g P… More
  •   Views:1084       Downloads:813       Cited by:1        Download PDF

  • AM Fungi and Piriformospora indica Improve Plant Growth of Pinus elliottii Seedlings
  • Abstract Pinus elliottii is an exotic afforestation pine extensively distributed in southern parts of China. In order to understand whether endophytic fungi can affect seedling growth of P. elliottii, Piriformospora indica (Pi), Funnelifcrmis mosseae (Fm), and Diversispora tortuosa (Dt) were inoculated respectively, and the non-inoculated group was set as control. The growth indexes, the contents of soluble sugar and soluble protein, and plant endogenous hormone levels in the leaves of P. elliottii, were analyzed. The results showed that Fm, Dt and Pi colonized the P. elliottii roots to form mycorrhizal structure and chlamydospores arranged in beads respectively. Three fungal inoculants exhibited… More
  •   Views:1459       Downloads:1173       Cited by:1        Download PDF