Special Issue "Plant Ecophysiology: Recent Trends and Advancements"

Submission Deadline: 01 October 2021
Submit to Special Issue
Guest Editors
Prof. Khalid Rehman Hakeem, King Abdulaziz University, Saudi Arabia
Dr. Tanveer Bilal Pirzadah, Chandigarh University, India


Plant systems, both natural and managed, face a wide range of environmental challenges, which are expected to become more intense because of global climate change. Plants have adapted to an incredible range of environments and the fields of ecological and environmental plant physiology have provided mechanistic understanding of the survival, distribution, productivity, and abundance of plant species across the diverse climates of our planet. Ecophysiological techniques have greatly advanced understanding of photosynthesis, respiration, plant water relations and plant responses to abiotic and biotic stresses, from instantaneous to evolutionary timescales. Ecophysiological studies also provide the basis for scaling plant physiological processes from the tissue to the canopy, ecosystem, region and globe. Advancing ecophysiological understanding and approaches to enhance plant responses to new environmental conditions is critical to developing meaningful high-throughput phenotyping tools and maintaining humankind’s supply of goods and services as global climate change intensifies. Therefore, new and improved methods and tools for the production of stress-tolerant plant production with increasing yield and agronomical traits are needed. In recent years, ever-increasing plant multi-omics and bioinformatic tools are used to unravel deeper molecular biological insights imparting plant tolerance to diverse stress mechanisms. The development of last-generation high-throughput screening technologies, known as omics, promises to speed up trait improvement in plants. Hence, this Special Issue aims to integrate recent innovative high-throughput sequencing and computational omics approaches such as genomics, epigenomics, transcriptomics, proteomics, hormonomics, metabolomics, ionomics and phenomics and other related topics which include breeding, biotechnology, biochemistry, systems biology and agricultural practices to make novel progress in delineating the molecular and cellular systems level aspects of stress tolerant plant production. Specifically, we welcome studies that explore the uses of the omics paradigm and their integration through trans-disciplinary bioinformatics, as tools to improve qualitative and quantitative traits in crop species. This issue also illustrates the central role for plant ecophysiology in applying basic research to address current and future challenges to humankind, in particular in conservation of natural ecosystems and adaptation of agriculture to biotic/abiotic stress and global climate change.

Potential topics may include, but are not limited to:
1) Influence of climate change on crop physiology
2) Advanced technologies to mitigate the impact of climate change

3) Multi-omics approach to study plant-abiotic stress mechanisms

4) Synergistic plant-microbe interactions: A way forward to remediate polluted soils
5) Osmolytes and abiotic stress: Responses and adaptations
6) Advanced tools for crop improvement programs
7) Plants under biotic and abiotic stress
8) Biotechnological tools to develop climate resilient crops

9) CRISPR/CAS9-a genome editing technology to develop abiotic stress tolerant plants

10) Advanced phenotyping tools in the plant ecophysiology 

Abiotic stress; Biotic stress; Bioinformatics; Crop improvement; CRISPR/Cas9; Genomics; Proteomics; Transcriptomics; Metabolomics; Phenomics

Published Papers

  • Phenotypic and Molecular Assessment of Wheat Genotypes Tolerant to Leaf Blight, Rust and Blast Diseases
  • Abstract Globally among biotic stresses, diseases like blight, rust and blast constitute prime constraints for reducing wheat productivity especially in Bangladesh. For sustainable productivity, the development of disease-resistant lines and high yielding varieties is vital and necessary. This study was conducted using 122 advanced breeding lines of wheat including 21 varieties developed by Bangladesh Wheat and Maize Research Institute (BAMRI) with aims to identify genotypes having high yield potential and resistance to leaf blight, leaf rust and blast diseases. These genotypes were evaluated for resistance against leaf blight and leaf rust at Dinajpur and wheat blast at Jashore under field condition.… More
  •   Views:450       Downloads:168        Download PDF

  • Cloning and Bioinformatics Analysis of the GlROP6 gene in Glehnia littoralis
  • Abstract Rho-related GTPase from plants (ROP) proteins play an essential role in plant stress resistance. In this study, the full-length GlROP6 gene was cloned based on G. littoralis transcriptome sequencing data acquired in response to salt stress. The protein sequence, conserved domains, secondary structure, three-dimensional structure, phylogenetic relationships, and expression pattern of the GlROP6 gene were systematically analysed. Our results showed that the full-length GlROP6 gene had an open reading frame of 606 bp, which encoded 201 amino acid residues with a relative molecular weight of 22.23463 kDa and a theoretical isoelectric point of 9.06. Amino acid sequence analyses indicated that… More
  •   Views:60       Downloads:47        Download PDF