The initial cardiac insult occurs with the infiltration of the virus into the tissue (such as in the case of SARS-CoV-2) and the genetic predisposition of the patient. Then, the damage of the cardiac tissue occurs in three phases: (a) acute, which consists of an initial immune response and the activation of macrophages will lead to the overexpension of cytokines (IL-1, IL-2, TNF, IFN-γ and others) leading to systemic hyperinflammation (indirect damage). This leads to cardiac dysfunction, arrhythmias, heart failure with or not preserved ejection fraction, (b) subacute, activation of the Natural Killers (NK) and the presence of free radicals (such as NO) begins. Presence of the the cytotoxic lymphocytes T (bind the viral antigen leading to the death of infected cells) and B (release antibodies that neutralize the virus thus blocking its entry into the cells). This leads to cardiomyopathy with cardiac dilatation, severe arrhythmias and (c) chronic, where there may be a benign evolution with healing of the myocardial tissue or severe heart damage (fibrotic scarring).
View this paper
Open Access
VIEWPOINT
DOMENICO MARIA CARRETTA1,§, MARINA DI DOMENICO2,§, ROBERTO LOVERO3, ROBERTO ARRIGONI4, ANGELIKA ELZBIETA WEGIERSKA5, MARIAROSARIA BOCCELLINO2,*, ANDREA BALLINI2,6,*, IOANNIS ALEXANDROS CHARITOS7,#, LUIGI SANTACROCE5,#
BIOCELL, Vol.46, No.8, pp. 1779-1788, 2022, DOI:10.32604/biocell.2022.020009
Abstract The existence of an inflammatory process in the heart muscle, related to a progressive worsening of myocardial
function, different etiopathogenetic mechanisms concur and often overlap, thus making the diagnosis and the therapeutic
approach complex. As the COVID-19 pandemic progresses, the effects of the disease on the organ systems and in
particular on the cardiovascular system are becoming more and more profound. Cardiac involvement is a well-known
event with a high percentage of findings in the heart’s magnetic field, even in asymptomatic areas. There are
numerous uncertainties regarding their evolution, in the long and short term, due not only to a… More >
Open Access
REVIEW
WEIYU CHEN1,2, MUHSIN H. YOUNIS3, ZHONGKUO ZHAO1,*, WEIBO CAI3,*
BIOCELL, Vol.46, No.8, pp. 1789-1801, 2022, DOI:10.32604/biocell.2022.018197
Abstract The knowledge of interactions among functional proteins helps researchers understand disease mechanisms
and design potential strategies for treatment. As a general approach, the fluorescent and affinity tags were employed
for exploring this field by labeling the Protein of Interest (POI). However, the autofluorescence and weak binding
strength significantly reduce the accuracy and specificity of these tags. Conversely, HaloTag, a novel self-labeling
enzyme (SLE) tag, could quickly form a covalent bond with its ligand, enabling fast and specific labeling of POI.
These desirable features greatly increase the accuracy and specificity, making the HaloTag a valuable system for
various applications ranging from… More >
Open Access
REVIEW
XIAOXIA WANG1,#, ZHONGYUAN YAO1,2,#, DI LIU1, CHUNHONG YU3,*, HUI LI1,3,*
BIOCELL, Vol.46, No.8, pp. 1803-1806, 2022, DOI:10.32604/biocell.2022.019731
(This article belongs to this Special Issue: Reproductive Health and Embryonic Development)
Abstract Each stage of embryonic development, including normal gamete maturation, fertilization, zygotic genome activation, and cleavage, is crucial for human reproduction. Early embryo arrest is a common phenomenon. It is estimated that about 40%–70% of human embryos are arrested at early developmental stages. However, the exact mechanism remains largely uncertain. Embryos can be investigated in vitro by way of the development of in vitro fertilization/intracytoplasmic sperm injection. In addition to iatrogenic factors related to abnormal oocyte/embryo development, multiple gene mutations have been found to be involved in such phenotypes. Based on the knowledge of known etiological factors, several therapies are proposed… More >
Open Access
REVIEW
ADRIANA L. FERREIRA, GUSTAVO C. PARIS, ALINE DE A. AZEVEDO, ERIKA A. C. CORTEZ, SIMONE N. CARVALHO, LAIS DE CARVALHO, ALESSANDRA A. THOLE*
BIOCELL, Vol.46, No.8, pp. 1807-1813, 2022, DOI:10.32604/biocell.2022.019363
(This article belongs to this Special Issue: Mesenchymal Stem Cells, Secretome and Biomaterials: Regenerative Medicine Application)
Abstract Mesenchymal stem cells (MSC) have pushed the field of stem cell-based therapies by inducing tissue
regeneration, immunosuppression, and angiogenesis mainly through vesicles and soluble factors release (paracrine
signaling). MSC-extracellular vesicles (MSC-EV) adaptable secretome and homing to injured sites allowed researchers
to unlock a new era of cell-free based therapy. In parallel, nanoparticles (NP) have been explored in contributing to
transport and drug delivery systems, giving drugs desired physical-chemical properties to exploit cell behavior.
However, NPs can be quickly recognized by immune cells and cleared from circulation. In this viewpoint, we explore
how combining both therapeutic strategies can improve efficacy and… More >
Open Access
VIEWPOINT
MASSIMO CONESE1,*, AURELIO PORTINCASA2
BIOCELL, Vol.46, No.8, pp. 1815-1826, 2022, DOI:10.32604/biocell.2022.019448
(This article belongs to this Special Issue: Mesenchymal Stem Cells, Secretome and Biomaterials: Regenerative Medicine Application)
Abstract The treatment of nonhealing and chronic cutaneous wounds still needs a clinical advancement to be effective.
Both mesenchymal stem cells (MSCs), obtained from different sources, and their secretome derived thereof (especially
exosomes) can activate signaling pathways related to promotion of cell migration, vascularization, collagen deposition,
and inflammatory response demonstrating prohealing, angiogenetic and anti-scarring capacities. On the other hand,
biodegradable biomimetic scaffolds can facilitate endogenous cell attachment and proliferation as well as extracellular
matrix production. In this Review, we revise the complex composites made by biomimetic scaffolds, mainly hydrogels,
and MSC-derived exosomes constructed for cutaneous wound healing. Studies demonstrate that there… More >
Open Access
REVIEW
FRANCESCO PADUANO1,2,*, EMANUELA ALTOMARE2,3, BENEDETTA MARRELLI1, VINCENZO DATTILO4, HAIZAL MOHD HUSSAINI5, PAUL ROY COOPER5, MARCO TATULLO6
BIOCELL, Vol.46, No.8, pp. 1827-1835, 2022, DOI:10.32604/biocell.2022.020462
Abstract Oral Cancer (OC) is one of the most recurrent cancers in the head and neck squamous cancer (SCCHN)
category. Recently, the genome-wide association studies (GWAS) have gained growing interest in the scientific
community. GWAS have identified several pathways involved in the interactions among general risk factors and
genomic variants affecting SCCHN. This systematic overview aims to critically evaluate the latest data reported within
the scientific literature. The aim was to investigate the impact of genetic aspects on SCCHN onset and prognosis,
involving other clinical and systemic co-factors. PubMed, Google Scholar, and Cancer Genetics Web databases have
been systematically investigated for… More >
Open Access
REVIEW
MARCO TATULLO1,*, LUISA LIMONGELLI2, ROSA MARIA MARANO3, ALESSANDRA VALLETTA4, ANGELA TEMPESTA2, SANDRO RENGO4
BIOCELL, Vol.46, No.8, pp. 1837-1842, 2022, DOI:10.32604/biocell.2022.020570
Abstract The scientific community is continuously working to translate the novel biomedical techniques into effective
medical treatments. CRISPR-Cas 9 system (Clustered Regularly Interspaced Short Palindromic Repeats-9), commonly
known as the “molecular scissor”, represents a recently developed biotechnology able to improve the quality and the
efficacy of traditional treatments, related to several human diseases, such as chronic diseases, neurodegenerative
pathologies and, interestingly, oral diseases. Of course, dental medicine has notably increased the use of
biotechnologies to ensure modern and conservative approaches: in this landscape, the use of CRISPR-Cas-9 system
may speed and personalize the traditional therapies, ensuring a good predictability of clinical… More >
Open Access
REVIEW
PRANAB DUTTA1,*, GOMATHY MUTHUKRISHNAN2,*, SABARINATHAN KUTALINGAM GOPALASUBRAMAIAM2, RAJAKUMAR DHARMARAJ2, ANANTHI KARUPPAIAH3, KARTHIBA LOGANATHAN4, KALAISELVI PERIYASAMY5, M. ARUMUGAM PILLAI2, GK UPAMANYA6, SARODEE BORUAH7, LIPA DEB1, ARTI KUMARI1, MADHUSMITA MAHANTA1, PUNABATI HEISNAM8, AK MISHRA9
BIOCELL, Vol.46, No.8, pp. 1843-1859, 2022, DOI:10.32604/biocell.2022.019291
Abstract
Plant growth-promoting rhizobacteria (PGPR) are specialized bacterial communities inhabiting the root rhizosphere and the secretion of root exudates helps to, regulate the microbial dynamics and their interactions with the plants. These bacteria viz., Agrobacterium, Arthobacter, Azospirillum, Bacillus, Burkholderia, Flavobacterium, Pseudomonas, Rhizobium, etc., play important role in plant growth promotion. In addition, such symbiotic associations of PGPRs in the rhizospheric region also confer protection against several diseases caused by bacterial, fungal and viral pathogens. The biocontrol mechanism utilized by PGPR includes direct and indirect mechanisms direct PGPR mechanisms include the production of antibiotic, siderophore, and hydrolytic enzymes, competition for space and… More >
Open Access
VIEWPOINT
MASASHI KAWAMI*, RYOKO YUMOTO, MIKIHISA TAKANO
BIOCELL, Vol.46, No.8, pp. 1861-1865, 2022, DOI:10.32604/biocell.2022.019667
Abstract A number of drugs induce pulmonary injury and subsequently lead to serious lung diseases such as pulmonary
fibrosis as the adverse drug reactions. However, an effective preventive approach against drug-induced pulmonary fibrosis
has not been established due to poor understanding of common preventive targets in a variety of drugs showing pulmonary
toxicity. Epithelial-mesenchymal transition (EMT), a cellular phenotypic change of the epithelial to mesenchymal state,
contributes to the development of pulmonary fibrosis through the conversion of damaged alveolar epithelium into
myofibroblasts. As several drugs with pulmonary toxicity have been reported to induce EMT, EMT serves as a bridge
between the… More >
Open Access
VIEWPOINT
ANA M. CÁRDENAS1,*, LUCIANA I. GALLO2, FERNANDO D. MARENGO2,*
BIOCELL, Vol.46, No.8, pp. 1867-1873, 2022, DOI:10.32604/biocell.2022.019086
Abstract The cortical actin network is a mesh of filaments distributed beneath the plasmalemma that dynamically reacts
in response to stimuli. This dynamic network of cortical filaments, together with motor myosin partners, adjusts the
plasmalemma tension, organizes membrane protein microdomains, remodels the cell surface and drives vesicle
motion in order to fine-tune exocytosis, endocytosis and recycling of secretory vesicles. In this review, we discuss how
these mechanisms work in secretory cells. More >
Open Access
VIEWPOINT
VITTORIO PICCHIO1, FRANCESCA PAGANO2, ISOTTA CHIMENTI1,3,*
BIOCELL, Vol.46, No.8, pp. 1875-1877, 2022, DOI:10.32604/biocell.2022.020181
Abstract Cardiac stromal cells have faced through the years a significant evolution in their definitions concerning their
phenotypes, markers, and functions. They are surging to key roles in physiopathology, becoming important targets to be
exploited for cardiac repair. In this perspective, we briefly discuss their role in novel therapeutic strategies for enhancing
cardiac repair and regeneration. More >
Open Access
VIEWPOINT
CARLO DAL LIN1,*, SABINO ILICETO1, FRANCESCO TONA1, GIUSEPPE VITIELLO2
BIOCELL, Vol.46, No.8, pp. 1879-1884, 2022, DOI:10.32604/biocell.2022.019169
Abstract In this view point paper, we briefly summarize some of the clinical, biochemical and biophysical results obtained
in our research on Relaxation Response. We also qualitatively describe the theoretical biophysical model that could link
them. Our work points to a unified view of the human biological system activity, joining the dynamics ruling the
interactions and correlations of the microscopic components to the knowledge of their specific individual properties
in the effort of going beyond a purely atomistic approach. More >
Open Access
VIEWPOINT
FUAD GANDHI TORIZAL1,2,*, FRANSISCUS FIANO ANTHONY KERANS3, ANNISA KHUMAIRA1
BIOCELL, Vol.46, No.8, pp. 1885-1891, 2022, DOI:10.32604/biocell.2022.019591
(This article belongs to this Special Issue: Mesenchymal Stem Cells, Secretome and Biomaterials: Regenerative Medicine Application)
Abstract The potential of mesenchymal stem cells (MSCs) in regenerative medicine has been largely known due to their
capability to induce tissue regeneration in vivo with minimum inflammation during implantation. This adult stem cell
type exhibit unique features of tissue repair mechanism and immune modulation mediated by their secreted factors,
called secretome. Recently, the utilization of secretome as a therapeutic agent provided new insight into cell-free
therapy. Nevertheless, a sufficient amount of secretome is necessary to realize their applications for translational
medicine which required a proper biomanufacturing process. Several factors related to their production need to be
considered to produce a… More >
Open Access
ARTICLE
MAGDALENA RUDZIŃSKA-RADECKA*
BIOCELL, Vol.46, No.8, pp. 1893-1901, 2022, DOI:10.32604/biocell.2022.019724
(This article belongs to this Special Issue: Recent Advancement in Cancer Molecular Signaling)
Abstract Clear cell renal cell carcinoma (KIRC) is the most common and aggressive malignancy subtype of renal neoplasm
that arises from proximal convoluted tubules. It is characterized by poor clinical outcomes and high mortality of patients due
to the lack of specific biomarkers for varying stages of the disease and no effective treatment. Proteases are associated with
the development of several malignant tumors in humans by their ability to degrade extracellular matrices, facilitating
metastasis. Herein, differentially expressed genes in KIRC cases compared to healthy kidneys were screened out from the
Gene Expression Profiling Interactive Analysis (GEPIA) database. This data was applied… More >
Open Access
ARTICLE
PANKE CHEN*, SHUAI MA
BIOCELL, Vol.46, No.8, pp. 1903-1909, 2022, DOI:10.32604/biocell.2022.018651
(This article belongs to this Special Issue: Cell-Based Regenerative Therapies)
Abstract This work aimed to investigate the effects of calcitonin gene-related peptide (CGRP)-modified mesenchymal stem cells (MSCs) on vascular stenosis in carotid balloon-injured rats. The CGRP gene labeled with EGFP was transfected into bone marrow MSCs, and CGRP protein expression in MSCs was confirmed by immunofluorescence assays. A rat carotid balloon injury model was established using a surgical method. CGRP-modified MSCs were orthotopically transplanted into the injured area of the rats. At 28 days after cell transplantation, EGFP and CD31 expression was detected by immunofluorescence staining. Hematoxylin-eosin (H&E) staining was used to detect the intima/media area of the injured carotid artery… More >
Open Access
ARTICLE
LIANHUAN MA1, SHOUPENG LIU2, XIAOWEN ZHEN1, WEIWEI QIAO1, LINA MA1, XIAOMIN ZHANG3,*
BIOCELL, Vol.46, No.8, pp. 1911-1916, 2022, DOI:10.32604/biocell.2022.019277
(This article belongs to this Special Issue: Single Cell Technologies and Molecular Mechanisms of Diseases)
Abstract This study was designed to investigate the protective effects of Astaxanthin (AST) in rats with diabetes mellitus
(DM) induced by streptozotocin. SD rats were divided into control group (n = 5, only received normal saline), DM group
(n = 8) and AST + DM group (n = 8; AST: 50 mg/kg/day). DM rats were induced by intraperitoneal injection of
streptozocin (STZ, 65 mg/kg). Blood glucose level and body weight were determined at weeks 0, 2, 4, 6 and 8,
respectively. At week 8, kidney function was determined, together with expression of P53 and dynamin-related
protein-1 (Drp1) by Western blot analysis… More >
Open Access
ARTICLE
ZHIYONG ZHANG1,#, YAN PAN2,#, YAN ZHAO1, MUDAN REN1, YARUI LI1, YUN FENG1, GUIFANG LU1,*, SHUIXIANG HE1,*
BIOCELL, Vol.46, No.8, pp. 1917-1924, 2022, DOI:10.32604/biocell.2022.018847
Abstract Colorectal cancer (CRC) is a heterogeneous cancer, and many risk factors for colorectal cancer have been
established. For CRC metastasis, tumor cell migration, adhesion as well as invasion are important processes. WiskottAldrich syndrome protein family member 3 (WASF3) is necessary for metastasis of various types of cancers. However,
its role in CRC progression has not been fully elucidated. This study examined the in vitro functional roles of WASF3 in
the CRC and explored the underlying molecular mechanisms. We used siRNA-WASF3 to gene silence WASF3 in colon
cancer cell (HCT116) in vitro. The effects of WASF3 silencing on HCT116 cell apoptosis,… More >
Open Access
ARTICLE
BUWEN CAO1,*, JIAWEI LUO2,*, SAINAN XIAO1,2, XIANGJUN ZHOU1
BIOCELL, Vol.46, No.8, pp. 1925-1933, 2022, DOI:10.32604/biocell.2022.019613
(This article belongs to this Special Issue: Computational Models in Non-Coding RNA and Human Disease)
Abstract The association between miRNA and disease has attracted more and more attention. Until now, existing methods
for identifying miRNA related disease mainly rely on top-ranked association model, which may not provide a full landscape
of association between miRNA and disease. Hence there is strong need of new computational method to identify the
associations from miRNA group view. In this paper, we proposed a framework, MDA-TOEPGA, to identify miRNAdisease association based on two-objective evolutionary programming genetic algorithm, which identifies latent miRNAdisease associations from the view of functional module. To understand the miRNA functional module in diseases, the
case study is presented.… More >
Open Access
ARTICLE
MENGMENG WU1,#, PENG GUO1,#, YISU SHI1,#, DANYAN ZHENG1, QIAONAN ZHANG1, XIN JIN1, YUHUA WANG1, QIANG LIN2, RONGJUN FANG1,*, WEIGUO ZHAO1,*
BIOCELL, Vol.46, No.8, pp. 1935-1945, 2022, DOI:10.32604/biocell.2022.019223
(This article belongs to this Special Issue: Decoding Gene (including circRNA, lincRNA miRNA and mRNA) Expression)
Abstract A variety of plants were colchicine treated to double their chromosome number. Chromosomes are genetic
carriers that determine the individual traits of organisms. The doubling of chromosomes will lead to modifications in
plant morphology, physiology and genetics. To determine the response of mulberry trees induced by colchicine, using
mulberry variety Yu-711 leaves as research materials, two small RNA libraries (control and experimental groups) were
constructed. It was found that 45 known miRNA genes and 78 predicted novel miRNA genes in the sequence results.
A comparison of data between the control group and the experimental group revealed 37 differentially expressed
miRNA… More >
Open Access
ARTICLE
XIN LI1, JIANMIN PAN1, FAISAL ISLAM2, JUANJUAN LI1, ZHUONI HOU1, ZONGQI YANG1, LING XU1,*
BIOCELL, Vol.46, No.8, pp. 1947-1958, 2022, DOI:10.32604/biocell.2022.019806
(This article belongs to this Special Issue: Physiology and Molecular Biology of Plant Stress Tolerance)
Abstract NAC (NAM, ATAF, CUC) is a class of transcription factors involved in plant growth regulation, abiotic stress
responses, morphogenesis and metabolism. Salvia miltiorrhiza is an important Chinese medicinal herb, but the
characterization of NAC genes in this species is limited. In this study, based on the Salvia miltiorrhiza genomic
databases, 82 NAC transcription factors were identified, which were divided into 14 groups. Meanwhile, phylogenetic
analysis, gene structure, chromosomal localization and potential role of SmNACs in abiotic stress conditions were also
studied. The results revealed that some SmNACs had different structures than others, which advised that these genes
may have multiple/distinct… More >
Open Access
ARTICLE
MING-AO CAO1, FEI ZHANG2, ELSAYED FATHI ABD_ALLAH3, QIANGSHENG WU1,*
BIOCELL, Vol.46, No.8, pp. 1959-1966, 2022, DOI:10.32604/biocell.2022.020391
(This article belongs to this Special Issue: Mycorrhizal Fungal Roles in Stress Tolerance of Plants)
Abstract A potted experiment was carried out to study the effect of an arbuscular mycorrhizal fungus (Diversispora
versiformis) and arbuscular mycorrhizal like fungus (Piriformospora indica) on antioxidant enzyme defense system of
Satsuma orange (Citrus sinensis cv. Oita 4) grafted on Poncirus trifoliata under favourable temperature (25°C) and
cold temperature (0°C) for 12 h. Such short-term treatment of cold temperature did not cause any significant change
in root fungal colonization and spore density in soil. Under cold stress, D. versiformis inoculation did not change the
activity of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) in leaves and roots, whereas P. indica… More >
Open Access
ARTICLE
YUNHUI ZHOU, YAJIE LIU, YUDAN WANG, CHUNXUE YANG*
BIOCELL, Vol.46, No.8, pp. 1967-1978, 2022, DOI:10.32604/biocell.2022.019304
(This article belongs to this Special Issue: Mycorrhizal Fungal Roles in Stress Tolerance of Plants)
Abstract To investigate the effects of arbuscular mycorrhizal (AM) fungi on the growth and saline–alkaline tolerance of
Potentilla anserina L., the seedlings were inoculated with Claroideoglomus etunicatum (W.N. Becker & Gerd.) C. Walker &
A. Schüßler in pot cultivation. After 90 days of culture, saline–alkaline stress was induced with NaCl and NaHCO3
solution according to the main salt components in saline–alkaline soils. Based on the physiological response of P. anserina
to the stress in the preliminary experiment, the solution concentrations of 0 mmol/L, 75 mmol/L, 150 mmol/L, 225 mmol/L
and 300 mmol/L were treated with stress for 10 days, respectively. The… More >
Open Access
ARTICLE
MOHAMED SALEM1,2, MOHAMMAD EL-METWALLY3, WESAMELDIN SABER4,*, SALLY NEGM5,6, ATTALLA EL-KOTT7.8, YASSER MAZROUA9,10, ABEER MAKHLOUF11, MAHMOUD MOUSTAFA7,12
BIOCELL, Vol.46, No.8, pp. 1979-1988, 2022, DOI:10.32604/biocell.2022.019301
Abstract Profound inspection of the life forms on the earth teaches how to be the complexity of interrelationships among
the various systems. Because of the emergence of novel viruses all the time and the inadequate of vaccines and antivirals,
viral contagions are amongst the most causative diseases affecting people worldwide. Fungi exemplify a massive source of
bioactive molecules as, many fungal secondary metabolities like Oxoglyantrypine, Carneic acid F, Scedapin C, Asteltoxin
E, Phomanolide, Norquinadoline A and Quinadoline B have antiviral activity. This review deals with how secondary
metabolites of fungi can help in the war against viruses in general and especially… More >
Open Access
ARTICLE
WEI LIANG1,2,*, QIANG LUO1,2,#, ZONGWEI ZHANG1,2,#, KEJU YANG1,2,3, ANKANG YANG1,2, QINGJIA CHI4, HUAN HU5
BIOCELL, Vol.46, No.8, pp. 1989-2002, 2022, DOI:10.32604/biocell.2022.019300
(This article belongs to this Special Issue: Decoding Gene (including circRNA, lincRNA miRNA and mRNA) Expression)
Abstract Diabetic nephropathy (DN) is a common microvascular complication that easily leads to end-stage renal disease. It
is important to explore the key biomarkers and molecular mechanisms relevant to diabetic nephropathy (DN). We used highthroughput RNA sequencing to obtain the genes related to DN glomerular tissues and healthy glomerular tissues of mice.
Then we used LIMMA to analyze differentially expressed genes (DEGs) between DN and non-diabetic glomerular
samples. And we performed KEGG, gene ontology functional (GO) enrichment, and gene set enrichment analysis to
reveal the signaling pathway of the disease. The CIBERSORT algorithm based on support vector machine was used to… More >